Example #1
0
    def __init__(self, data):

        self.x = data
        self.x2 = self.x ** 2
        self.i = self.x.cumsum(axis=0).cumsum(axis=1)
        self.i2 = self.x2.cumsum(axis=0).cumsum(axis=1)
        self.i_pad = pad2d(self.i, 1)
        self.i2_pad = pad2d(self.i2, 1)
Example #2
0
    def __init__(self, data):

        self.x = data
        self.x2 = self.x**2
        self.i = self.x.cumsum(axis=0).cumsum(axis=1)
        self.i2 = self.x2.cumsum(axis=0).cumsum(axis=1)
        self.i_pad = pad2d(self.i, 1)
        self.i2_pad = pad2d(self.i2, 1)
Example #3
0
def window(data, pos, pixel_rad):

    # Check that the input array has two dimensions.
    data = np.array(data)
    if data.ndim != 2:
        raise ValueError('The input array must be 2D.')

    # If the pixel radius size is one repat the value for the 2nd dimension.
    pixel_rad = np.array(pixel_rad)
    if pixel_rad.size == 1:
        pixel_rad = np.repeat(pixel_rad, 2)
    if pixel_rad.size not in (1, 2):
        raise ValueError('The pixel radius must have a size of 1 or 2.')

    # Check that the array position has a size of two.
    pos = np.array(pos) % np.array(data.shape)
    if pos.size != 2:
        raise ValueError('The array position must have a size of 2.')

    # Check if the pixel radius is within the bounds of the input array.
    if (np.any(pixel_rad < 1)
            or np.any(np.array(data.shape) / 2 - pixel_rad < 0)):
        raise ValueError('The pixel radius values must have a value of at '
                         'least 1 and at most half the size of the input '
                         'array. Array size: ' + str(data.shape))

    # Return window selection.
    return pad2d(data, pixel_rad)[[
        slice(a, a + 2 * b + 1) for a, b in zip(pos, pixel_rad)
    ]]
Example #4
0
def psf_var_convolve(image, psf):

    # Function to select slices of an image.
    def select_slices(image_shape, sub_shape):
        ranges = np.array([np.arange(i) for i in image_shape])
        limits = np.array([ranges.T + sub_shape / 2 + 1,
                           ranges.T + 1.5 * sub_shape + 1]).T
        return np.array([np.array([slice(*i), slice(*j)]) for i in limits[0]
                         for j in limits[1]])

    # Function to convolve a PSF with a sub-image.
    def get_convolve(sub_image, psf):
        return np.multiply(sub_image, np.rot90(psf, 2)).sum()

    # Pad image borders by PSF size.
    image_pad = pad2d(image, psf.shape[1:])

    # Get sub-image slices of the padded image.
    slices = select_slices(image.shape, data2np(psf.shape[1:]))

    # Convolve sub-images with PSFs.
    image_conv = np.array([[get_convolve(image_pad[list(x)], y)]
                           for x, y in zip(slices, psf)])

    return np.reshape(image_conv, image.shape)
Example #5
0
def window(data, pos, pixel_rad):

    # Check that the input array has two dimensions.
    data = np.array(data)
    if data.ndim != 2:
        raise ValueError('The input array must be 2D.')

    # If the pixel radius size is one repat the value for the 2nd dimension.
    pixel_rad = np.array(pixel_rad)
    if pixel_rad.size == 1:
        pixel_rad = np.repeat(pixel_rad, 2)
    if pixel_rad.size not in (1, 2):
        raise ValueError('The pixel radius must have a size of 1 or 2.')

    # Check that the array position has a size of two.
    pos = np.array(pos) % np.array(data.shape)
    if pos.size != 2:
        raise ValueError('The array position must have a size of 2.')

    # Check if the pixel radius is within the bounds of the input array.
    if (np.any(pixel_rad < 1) or np.any(np.array(data.shape) / 2 -
                                        pixel_rad < 0)):
        raise ValueError('The pixel radius values must have a value of at '
                         'least 1 and at most half the size of the input '
                         'array. Array size: ' + str(data.shape))

    # Return window selection.
    return pad2d(data, pixel_rad)[[slice(a, a + 2 * b + 1) for a, b in
                                   zip(pos, pixel_rad)]]
Example #6
0
def get_l2norm(data, layout, pixel_rad=9):

    radius = data.shape[0] / layout[0] / 2
    centres = image.image_centres(data.shape, layout)
    cube = image_file_io.gen_data_cube(data, centres, pixel_rad)
    cube = transform.cube2map(np.array([np_adjust.pad2d(x, radius - pixel_rad)
                              for x in cube]), layout)
    diff = data - cube
    l2norm = np.linalg.norm(diff) / np.sum(diff > 0) * np.prod(data.shape)

    print ' - L2 Norm of noise from data:', l2norm

    return l2norm
Example #7
0
 def _pad_data(self):
     self.pad_data = pad2d(self.data, self.pixel_rad)
Example #8
0
 def _pad_data(self):
     self.pad_data = pad2d(self.data, self.pixel_rad)