Example #1
0
    def calculateStatistics(self):
        ''' calculate spread statistics '''
        res = {}
        res['micro'] = rank(self.params['change'].sum(), self.change)
        res['macro'] = rank(self.params['mktValue'].sum(), self.value)
        res['last'] = self.params['mktValue'].sum()

        return Series(res, name=self.name)
 def calculateStatistics(self):
     ''' calculate spread statistics '''
     res = {}
     res['micro'] = rank(self.params['change'].sum(),self.change)
     res['macro'] = rank(self.params['mktValue'].sum(), self.value)
     res['last'] = self.params['mktValue'].sum()
          
     return   Series(res,name=self.name)    
Example #3
0
    def calculateStatistics(self, other=None):
        ''' calculate spread statistics, save internally '''
        res = {}
        res['micro'] = rank(self.returns[-1], self.returns)
        res['macro'] = rank(self.value[-1], self.value)

        res['last'] = self.value[-1]

        if other is not None:
            res['corr'] = self.returns.corr(returns(other))

        return Series(res, name=self.name)
Example #4
0
    def calculateStatistics(self,other=None):
        ''' calculate spread statistics, save internally '''
        res = {}
        res['micro'] = rank(self.returns[-1],self.returns)
        res['macro'] = rank(self.value[-1], self.value)

        res['last'] = self.value[-1]
        
        if other is not None:
            res['corr'] = self.returns.corr(returns(other))
        
        return   Series(res,name=self.name)    
Example #5
0
if specific_subjects:
    df = df.loc[df['Subjects'].apply(offers_subjects, subjects=specific_subjects)]

weights = [1 for x in range(len(df.columns) - 1)]

# Get weights from sliders
weights_expander = st.beta_expander('Change Weights')
with weights_expander:
    weights_columns = st.beta_columns(int((len(df.columns) - 1) / 2))
    for ind, col in enumerate(df.columns):
        if col == 'Subjects':
            continue
        weights[ind] = weights_columns[int(ind/2)].slider(f'{col} Weighting', max_value=10, step=1, value=1, key=str(ind))

# Rank the universities
df = rank(df, weights)

# Set columns to show on table
columns = ['Rank',
           '% Satisfied with Teaching',
           '% Satisfied with Course',
           '% Satisfied with Assessment',
           'Continuation %',
           '% Graduates in High Skilled Work',
           'Applications to Acceptance (%)',
           'Student/Staff Ratio',
           'Average Salary',
           'Academic Services Expenditure per Student',
           'Facilities Expenditure per Student']
df = df[columns]
Example #6
0
def ranking(api):
    fc.rank(api)
Example #7
0
def main():
    functions.clear_screen()

    rank = functions.open_rank()

    print(functions.get_info())
    opc_usr = int(input("[0 a 5] >>> "))

    if opc_usr == 1:
        # NOTE: listar os times em ordem alfabetica
        print("\n--- Ordem alfabetica:")

        sorted_rank = sorted(rank)

        functions.rank(0, len(rank), sorted_rank)

        print("---\n")
    elif opc_usr == 2:
        # NOTE: todas as 20 colocacoes
        print("\n--- 20 primeiros colocados:")

        functions.rank(0, 20, rank)

        print("---\n")
    elif opc_usr == 3:
        # NOTE: pesquisar por nome
        print("\n--- Pesquisar por nome:")

        print(
            "- Digite o nome (ou parte dele) do time a ser pesquisado [sem acentuaçao]:"
        )
        search = str(input("- >>> ")).upper().strip()

        teams_found = []

        for team in rank:
            if search in team:
                teams_found.append(team)

        if len(teams_found) > 0:
            for team in teams_found:
                index = rank.index(team)
                print(f"- {index+1:>2}°\t{rank[index]}")
        else:
            print("Este time não consta entre os 20 classificados..."
                  "Verifique se o nome foi digitado corretamente.")

        print("---\n")
    elif opc_usr == 4:
        # NOTE: apenas as 4 ultimas colocacoes
        print("\n--- 4 ultimas colocacoes:")

        lenght = len(rank)

        functions.rank(lenght - 4, lenght, rank)

        print("---\n")
    elif opc_usr == 5:
        # NOTE: apenas as 5 primeiras colocacoes
        print("\n--- 5 primeiras colocacoes:")

        functions.rank(0, 5, rank)

        print("---\n")
    elif opc_usr == 0:
        print("Saindo imediatamente...")
        exit()
    else:
        print("ERRO: opcao invalida, tente novamente")

    input("Para continuar digite ENTER: ")
    main()