def main(): tf.random.set_seed(22) np.random.seed(22) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' assert tf.__version__.startswith('2.') # hyper parameters z_dim = 100 epochs = 3000000 batch_size = 512 learning_rate = 0.002 is_training = True img_path = glob.glob( r'C:\Users\Jackie Loong\Downloads\DCGAN-LSGAN-WGAN-GP-DRAGAN-Tensorflow-2-master\data\faces\*.jpg' ) dataset, img_shape, _ = make_anime_dataset(img_path, batch_size) print(dataset, img_shape) sample = next(iter(dataset)) print(sample.shape, tf.reduce_max(sample).numpy(), tf.reduce_min(sample).numpy()) dataset = dataset.repeat() db_iter = iter(dataset) generator = Generator() generator.build(input_shape=(None, z_dim)) discriminator = Discriminator() discriminator.build(input_shape=(None, 64, 64, 3)) g_optimizer = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) d_optimizer = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) for epoch in range(epochs): batch_z = tf.random.uniform([batch_size, z_dim], minval=-1., maxval=1.) batch_x = next(db_iter) # train D with tf.GradientTape() as tape: d_loss = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training) grads = tape.gradient(d_loss, discriminator.trainable_variables) d_optimizer.apply_gradients( zip(grads, discriminator.trainable_variables)) with tf.GradientTape() as tape: g_loss = g_loss_fn(generator, discriminator, batch_z, is_training) grads = tape.gradient(g_loss, generator.trainable_variables) g_optimizer.apply_gradients(zip(grads, generator.trainable_variables)) if epoch % 100 == 0: print(epoch, 'd-loss:', float(d_loss), 'g-loss:', float(g_loss)) z = tf.random.uniform([100, z_dim]) fake_image = generator(z, training=False) img_path = os.path.join('images', 'gan-%d.png' % epoch) save_result(fake_image.numpy(), 10, img_path, color_mode='P')
def main(): tf.random.set_seed(233) np.random.seed(233) assert tf.__version__.startswith('2.') # hyper parameters z_dim = 100 epochs = 3000000 batch_size = 512 learning_rate = 0.0005 is_training = True img_path = glob.glob(r'C:\Users\Jackie\Downloads\faces\*.jpg') assert len(img_path) > 0 dataset, img_shape, _ = make_anime_dataset(img_path, batch_size) print(dataset, img_shape) sample = next(iter(dataset)) print(sample.shape, tf.reduce_max(sample).numpy(), tf.reduce_min(sample).numpy()) dataset = dataset.repeat() db_iter = iter(dataset) generator = Generator() generator.build(input_shape=(None, z_dim)) discriminator = Discriminator() discriminator.build(input_shape=(None, 64, 64, 3)) z_sample = tf.random.normal([100, z_dim]) g_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) d_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) for epoch in range(epochs): for _ in range(5): batch_z = tf.random.normal([batch_size, z_dim]) batch_x = next(db_iter) # train D with tf.GradientTape() as tape: d_loss, gp = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training) grads = tape.gradient(d_loss, discriminator.trainable_variables) d_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables)) batch_z = tf.random.normal([batch_size, z_dim]) with tf.GradientTape() as tape: g_loss = g_loss_fn(generator, discriminator, batch_z, is_training) grads = tape.gradient(g_loss, generator.trainable_variables) g_optimizer.apply_gradients(zip(grads, generator.trainable_variables)) if epoch % 100 == 0: print(epoch, 'd-loss:', float(d_loss), 'g-loss:', float(g_loss), 'gp:', float(gp)) z = tf.random.normal([100, z_dim]) fake_image = generator(z, training=False) img_path = os.path.join('images', 'wgan-%d.png' % epoch) save_result(fake_image.numpy(), 10, img_path, color_mode='P')
def main(): # 设计随机种子,方便复现 tf.random.set_seed(22) np.random.seed(22) # 设定相关参数 z_dim = 100 epochs = 3000000 batch_size = 512 # 根据自己的GPU能力设计 learning_rate = 0.002 is_training = True # 加载数据(根据自己的路径更改),建立网络 img_path = glob.glob( r'C:\Users\Jackie Loong\Downloads\DCGAN-LSGAN-WGAN-GP-DRAGAN-Tensorflow-2-master\data\faces\*.jpg' ) dataset, img_shape, _ = make_anime_dataset(img_path, batch_size) # print(dataset, img_shape) # sample = next(iter(dataset)) dataset = dataset.repeat() db_iter = iter(dataset) generator = Generator() generator.build(input_shape=(None, z_dim)) discriminator = Discriminator() discriminator.build(input_shape=(None, 64, 64, 3)) # 建立优化器 g_optimizer = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) d_optimizer = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) for epoch in range(epochs): # 随机取样出来的结果 batch_z = tf.random.uniform([batch_size, z_dim], minval=-1., maxval=1.) batch_x = next(db_iter) # 训练检测网络 with tf.GradientTape() as tape: d_loss, gp = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training) grads = tape.gradient(d_loss, discriminator.trainable_variables) d_optimizer.apply_gradients( zip(grads, discriminator.trainable_variables)) # 训练生成网络 with tf.GradientTape() as tape: g_loss = g_loss_fn(generator, discriminator, batch_z, is_training) grads = tape.gradient(g_loss, generator.trainable_variables) g_optimizer.apply_gradients(zip(grads, generator.trainable_variables)) if epoch % 100 == 0: print(epoch, 'd-loss:', float(d_loss), 'g-loss:', float(g_loss), 'gp:', float(gp)) z = tf.random.uniform([100, z_dim]) fake_image = generator(z, training=False) # 生成的图片保存,images文件夹下, 图片名为:wgan-epoch.png img_path = os.path.join('images', 'wgan-%d.png' % epoch) # 10*10, 彩色图片 save_result(fake_image.numpy(), 10, img_path, color_mode='P')
def train(): tf.random.set_seed(22) np.random.seed(22) data_iter = dataset.load_dataset() # 利用数组形式实现多输入模型 generator = Generator() generator.build(input_shape=[(None, z_dim), (None, 10)]) discriminator = Discriminator() discriminator.build(input_shape=[(None, 28, 28, 1), (None, 10)]) g_optimizer = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) d_optimizer = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) for epoch in range(epochs): for i in range(int(60000 / batch_size / epochs_d)): batch_z = tf.random.uniform([batch_size, z_dim], minval=0., maxval=1.) batch_c = [] for k in range(batch_size): batch_c.append(np.random.randint(0, 10)) batch_c = tf.one_hot(tf.convert_to_tensor(batch_c), 10) # train D for epoch_d in range(epochs_d): batch_data = next(data_iter) batch_x = batch_data[0] batch_y = batch_data[1] with tf.GradientTape() as tape: d_loss = d_loss_fn(generator, discriminator, batch_z, batch_c, batch_x, batch_y, is_training) grads = tape.gradient(d_loss, discriminator.trainable_variables) d_optimizer.apply_gradients( zip(grads, discriminator.trainable_variables)) # train G with tf.GradientTape() as tape: g_loss = g_loss_fn(generator, discriminator, batch_z, batch_c, is_training) grads = tape.gradient(g_loss, generator.trainable_variables) g_optimizer.apply_gradients( zip(grads, generator.trainable_variables)) print('epoch : {epoch} d-loss : {d_loss} g-loss : {g_loss}'.format( epoch=epoch, d_loss=d_loss, g_loss=g_loss)) z = tf.random.uniform([100, z_dim], minval=0., maxval=1.) c = [] for i in range(10): for j in range(10): c.append(i) c = tf.one_hot(tf.convert_to_tensor(c), 10) fake_image = generator([z, c], training=False) img_path = os.path.join('images', 'infogan-%d-final.png' % epoch) saver.save_image(fake_image.numpy(), img_path, 10)
def main(): tf.random.set_seed(3333) np.random.seed(3333) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' assert tf.__version__.startswith('2.') z_dim = 100 # 隐藏向量z的长度 epochs = 3000000 # 训练步数 batch_size = 64 learning_rate = 0.0002 is_training = True # 获取数据集路径 img_path = glob.glob(r'C:\Users\jay_n\.keras\datasets\faces\*.jpg') + \ glob.glob(r'C:\Users\jay_n\.keras\datasets\faces\*.png') print('images num:', len(img_path)) # 构建数据集对象 dataset, img_shape, _ = make_anime_dataset(img_path, batch_size, resize=64) print(dataset, img_shape) sample = next(iter(dataset)) # 采样 print(sample.shape, tf.reduce_max(sample).numpy(), tf.reduce_min(sample).numpy()) dataset = dataset.repeat(100) db_iter = iter(dataset) generator = Generator() generator.build(input_shape=(4, z_dim)) discriminator = Discriminator() discriminator.build(input_shape=(4, 64, 64, 3)) # 分别为生成器和判别器创建优化器 g_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) d_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) # generator.load_weights('generator.ckpt') # discriminator.load_weights('discriminator.ckpt') # print('Loaded ckpt!!') d_losses, g_losses = [], [] for epoch in range(epochs): # 1. 训练判别器 for _ in range(1): # 采样隐藏向量 batch_z = tf.random.normal([batch_size, z_dim]) batch_x = next(db_iter) # 采样真实图片 # 判别器前向计算 with tf.GradientTape() as tape: d_loss, _ = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training) grads = tape.gradient(d_loss, discriminator.trainable_variables) d_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables)) # 2. 训练生成器 # 采样隐藏向量 batch_z = tf.random.normal([batch_size, z_dim]) # 生成器前向计算 with tf.GradientTape() as tape: g_loss = g_loss_fn(generator, discriminator, batch_z, is_training) grads = tape.gradient(g_loss, generator.trainable_variables) g_optimizer.apply_gradients(zip(grads, generator.trainable_variables)) if epoch % 100 == 0: print(epoch, 'd-loss:', float(d_loss), 'g-loss:', float(g_loss)) # 可视化 z = tf.random.normal([100, z_dim]) fake_image = generator(z, training=False) img_path = os.path.join('gan_images', 'gan-%d.png' % epoch) save_result(fake_image.numpy(), 10, img_path, color_mode='P') d_losses.append(float(d_loss)) g_losses.append(float(g_loss)) if epoch % 10000 == 1: generator.save_weights('generator.ckpt') discriminator.save_weights('discriminator.ckpt')
def main(): tf.random.set_seed(22) np.random.seed(22) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' assert tf.__version__.startswith('2.') # hyper parameters z_dim = 100 epochs = 3000000 batch_size = 128 learning_rate = 0.0002 is_training = True # for validation purpose assets_dir = './images' if not os.path.isdir(assets_dir): os.makedirs(assets_dir) val_block_size = 10 val_size = val_block_size * val_block_size # load mnist data (x_train, _), (x_test, _) = keras.datasets.mnist.load_data() x_train = x_train.astype(np.float32) / 255. db = tf.data.Dataset.from_tensor_slices(x_train).shuffle( batch_size * 4).batch(batch_size).repeat() db_iter = iter(db) inputs_shape = [-1, 28, 28, 1] # create generator & discriminator generator = Generator() generator.build(input_shape=(batch_size, z_dim)) generator.summary() discriminator = Discriminator() discriminator.build(input_shape=(batch_size, 28, 28, 1)) discriminator.summary() # prepare optimizer d_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) g_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) for epoch in range(epochs): # no need labels batch_x = next(db_iter) # rescale images to -1 ~ 1 batch_x = tf.reshape(batch_x, shape=inputs_shape) # -1 - 1 batch_x = batch_x * 2.0 - 1.0 # Sample random noise for G batch_z = tf.random.uniform(shape=[batch_size, z_dim], minval=-1., maxval=1.) with tf.GradientTape() as tape: d_loss = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training) grads = tape.gradient(d_loss, discriminator.trainable_variables) d_optimizer.apply_gradients( zip(grads, discriminator.trainable_variables)) with tf.GradientTape() as tape: g_loss = g_loss_fn(generator, discriminator, batch_z, is_training) grads = tape.gradient(g_loss, generator.trainable_variables) g_optimizer.apply_gradients(zip(grads, generator.trainable_variables)) if epoch % 100 == 0: print(epoch, 'd loss:', float(d_loss), 'g loss:', float(g_loss)) # validation results at every epoch val_z = np.random.uniform(-1, 1, size=(val_size, z_dim)) fake_image = generator(val_z, training=False) image_fn = os.path.join('images', 'gan-val-{:03d}.png'.format(epoch + 1)) save_result(fake_image.numpy(), val_block_size, image_fn, color_mode='L')
def main(): tf.random.set_seed(233) np.random.seed(233) z_dim = 100 epochs = 3000000 batch_size = 512 learning_rate = 2e-4 # ratios = D steps:G steps ratios = 2 img_path = glob.glob(os.path.join('faces', '*.jpg')) dataset, img_shape, _ = make_anime_dataset(img_path, batch_size) print(dataset, img_shape) sample = next(iter(dataset)) print(sample.shape, tf.reduce_max(sample).numpy(), tf.reduce_min(sample).numpy()) dataset = dataset.repeat() db_iter = iter(dataset) generator = Generator() generator.build(input_shape=(None, z_dim)) # generator.load_weights(os.path.join('checkpoints', 'generator-5000')) discriminator = Discriminator() discriminator.build(input_shape=(None, 64, 64, 3)) # discriminator.load_weights(os.path.join('checkpoints', 'discriminator-5000')) g_optimizer = tf.optimizers.Adam(learning_rate, beta_1=0.5) d_optimizer = tf.optimizers.Adam(learning_rate, beta_1=0.5) # a fixed noise for sampling z_sample = tf.random.normal([100, z_dim]) g_loss_meter = keras.metrics.Mean() d_loss_meter = keras.metrics.Mean() gp_meter = keras.metrics.Mean() for epoch in range(epochs): # train D for step in range(ratios): batch_z = tf.random.normal([batch_size, z_dim]) batch_x = next(db_iter) with tf.GradientTape() as tape: d_loss, gp = d_loss_fn(generator, discriminator, batch_z, batch_x) d_loss_meter.update_state(d_loss) gp_meter.update_state(gp) gradients = tape.gradient(d_loss, discriminator.trainable_variables) d_optimizer.apply_gradients( zip(gradients, discriminator.trainable_variables)) # train G batch_z = tf.random.normal([batch_size, z_dim]) with tf.GradientTape() as tape: g_loss = g_loss_fn(generator, discriminator, batch_z) g_loss_meter.update_state(g_loss) gradients = tape.gradient(g_loss, generator.trainable_variables) g_optimizer.apply_gradients( zip(gradients, generator.trainable_variables)) if epoch % 100 == 0: fake_image = generator(z_sample, training=False) print(epoch, 'd-loss:', d_loss_meter.result().numpy(), 'g-loss', g_loss_meter.result().numpy(), 'gp', gp_meter.result().numpy()) d_loss_meter.reset_states() g_loss_meter.reset_states() gp_meter.reset_states() # save generated image samples img_path = os.path.join('images_wgan_gp', 'wgan_gp-%d.png' % epoch) save_result(fake_image.numpy(), 10, img_path, color_mode='P') if epoch + 1 % 2000 == 0: generator.save_weights( os.path.join('checkpoints_gp', 'generator-%d' % epoch)) discriminator.save_weights( os.path.join('checkpoints_gp', 'discriminator-%d' % epoch))
def main(): tf.random.set_seed(3333) np.random.seed(3333) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' assert tf.__version__.startswith('2.') z_dim = 100 # 隐藏向量z的长度 epochs = 3000000 # 训练步数 batch_size = 64 # batch size learning_rate = 0.0002 is_training = True # 获取数据集路径 # C:\Users\z390\Downloads\anime-faces # r'C:\Users\z390\Downloads\faces\*.jpg' # img_path = glob.glob(r'C:\Users\z390\Downloads\anime-faces\*\*.jpg') + \ # glob.glob(r'C:\Users\z390\Downloads\anime-faces\*\*.png') img_path = glob.glob( r'/home/ulysses/workspace/AI/Deep-Learning-with-TensorFlow-book/ch13/faces/*.jpg' ) # img_path.extend(img_path2) print('images num:', len(img_path)) # 构建数据集对象 dataset, img_shape, _ = make_anime_dataset(img_path, batch_size, resize=64) print(dataset, img_shape) sample = next(iter(dataset)) # 采样 print(sample.shape, tf.reduce_max(sample).numpy(), tf.reduce_min(sample).numpy()) dataset = dataset.repeat(100) # 重复循环 db_iter = iter(dataset) generator = Generator() # 创建生成器 generator.build(input_shape=(4, z_dim)) discriminator = Discriminator() # 创建判别器 discriminator.build(input_shape=(4, 64, 64, 3)) # 分别为生成器和判别器创建优化器 g_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) d_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5) if os.path.exists(r'./generator.ckpt.index'): generator.load_weights('generator.ckpt') print('Loaded generator chpt!!') if os.path.exists(r'./discriminator.ckpt.index'): discriminator.load_weights('discriminator.ckpt') print('Loaded discriminator chpt!!') d_losses, g_losses = [], [] for epoch in range(epochs): # 训练epochs次 # 1. 训练判别器 for _ in range(1): # 采样隐藏向量 batch_z = tf.random.normal([batch_size, z_dim]) batch_x = next(db_iter) # 采样真实图片 # 判别器前向计算 with tf.GradientTape() as tape: d_loss = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training) grads = tape.gradient(d_loss, discriminator.trainable_variables) d_optimizer.apply_gradients( zip(grads, discriminator.trainable_variables)) # 2. 训练生成器 # 采样隐藏向量 batch_z = tf.random.normal([batch_size, z_dim]) batch_x = next(db_iter) # 采样真实图片 # 生成器前向计算 with tf.GradientTape() as tape: g_loss = g_loss_fn(generator, discriminator, batch_z, is_training) grads = tape.gradient(g_loss, generator.trainable_variables) g_optimizer.apply_gradients(zip(grads, generator.trainable_variables)) if epoch % 100 == 0: print(epoch, 'd-loss:', float(d_loss), 'g-loss:', float(g_loss)) # 可视化 z = tf.random.normal([100, z_dim]) fake_image = generator(z, training=False) img_path = os.path.join('gan_images1', 'gan-%d.png' % epoch) save_result(fake_image.numpy(), 10, img_path, color_mode='P') d_losses.append(float(d_loss)) g_losses.append(float(g_loss)) if epoch % 10000 == 0: # print(d_losses) # print(g_losses) generator.save_weights('./check_point/generator.ckpt') discriminator.save_weights('./check_point/discriminator.ckpt')