Example #1
0
def main():
    parser = argparse.ArgumentParser(description='DCGAN for mnist')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=1,
                        help='# of each mini-batch size')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=500,
                        help='# of epoch')
    parser.add_argument(
        '--gpu',
        '-g',
        type=int,
        default=-1,
        help='GPU ID (if you want to use gpu, set positive value)')
    parser.add_argument('--dataset',
                        '-d',
                        type=str,
                        default='',
                        help='path of training dataset path.')
    parser.add_argument('--out_dir',
                        '-o',
                        type=str,
                        default='result',
                        help='path of output the result.')
    parser.add_argument('--n_hidden',
                        '-n',
                        type=int,
                        default=100,
                        help='# of hidden unit(z)')
    args = parser.parse_args()

    logger = set_logger()

    logger.debug('=' * 10)
    logger.debug('GPU: {}'.format(args.gpu))
    logger.debug('#batchsize: {}'.format(args.batchsize))
    logger.debug('#epoch: {}'.format(args.epoch))
    logger.debug('n_hidden: {}'.format(args.n_hidden))
    logger.debug('dataset: {}'.format(args.dataset))
    logger.debug('out_dir: {}'.format(args.out_dir))
    logger.debug('=' * 10)

    print()
    logger.debug('setup models')

    # Setup networks
    generator = Generator(z_dim=args.n_hidden)
    discriminator = Discriminator(z_dim=args.n_hidden)
    if args.gpu >= 0:
        chainer.backends.cuda.get_device_from_id(args.gpu).use()
        generator.to_gpu()
        discriminator.to_gpu()

    # Setup optimizers
    def make_optimizer(model, alpha=0.0002, beta1=0.5):
        optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
        optimizer.setup(model)
        optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(0.0001),
                           'hook_dec')
        return optimizer

    opt_generator = make_optimizer(generator)
    opt_discriminator = make_optimizer(discriminator)

    if args.dataset == '':
        train, _ = chainer.datasets.get_mnist(withlabel=False,
                                              ndim=3,
                                              scale=255.)
    else:
        pass
    # Setup an iterator
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)

    # Setup an Updater
    updater = GANUpdater(models=(generator, discriminator),
                         iterator=train_iter,
                         optimizer={
                             'gen': opt_generator,
                             'dis': opt_discriminator
                         },
                         device=args.gpu)
    # Setup a trainer
    trainer = training.Trainer(updater, (args.epoch, 'epoch'),
                               out=args.out_dir)
    snapshot_interval = (1000, 'iteration')
    display_interval = (100, 'iteration')
    trainer.extend(
        extensions.snapshot(filename='snapshot_iter_{.updater.iteration}.npz'),
        trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        generator, 'generator_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        discriminator, 'discriminator_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)
    trainer.extend(extensions.LogReport(trigger=snapshot_interval))
    trainer.extend(extensions.PrintReport([
        'epoch',
        'iteration',
        'gen/loss',
        'dis/loss',
    ]),
                   trigger=display_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    # Start train
    logger.debug('Training Start.')
    print()
    print()
    trainer.run()
Example #2
0
  img=Image.fromarray(im)
  return img

def save_img(img_array,save_path): #save from np.array (3,height,width)
  img = array_to_img(img_array)
  img.save(save_path)

Gen = Generator()
Dis = Discriminator()

gpu = -1 
if gpu>=0:
    xp = cuda.cupy
    cuda.get_device(gpu).use()
    Gen.to_gpu()
    Dis.to_gpu()
else:
    xp = np

optG = Gen.make_optimizer()
optD = Dis.make_optimizer()
optG.setup(Gen)
optD.setup(Dis)

real = RPGCharacters()
trainsize=real.train_size
testsize=real.test_size

batchsize = 64
max_epoch = 100
for epoch in range(max_epoch):