Example #1
0
    def test_output_value(self, filters, in_channels, strides):
        model = CNNModel(filters=filters,
                         strides=strides,
                         name='cnn_model',
                         padding='VALID',
                         hidden_w_init=tf.constant_initializer(1),
                         hidden_nonlinearity=None)

        outputs = model.build(self._input_ph).outputs
        output = self.sess.run(outputs,
                               feed_dict={self._input_ph: self.obs_input})

        filter_sum = 1
        # filter value after 3 layers of conv
        for filter_iter, in_channel in zip(filters, in_channels):
            filter_sum *= filter_iter[1][0] * filter_iter[1][1] * in_channel

        height_size = self.input_height
        width_size = self.input_width
        for filter_iter, stride in zip(filters, strides):
            height_size = int((height_size - filter_iter[1][0]) / stride) + 1
            width_size = int((width_size - filter_iter[1][1]) / stride) + 1
        flatten_shape = height_size * width_size * filters[-1][0]

        # flatten
        expected_output = np.full((self.batch_size, flatten_shape),
                                  filter_sum,
                                  dtype=np.float32)

        assert np.array_equal(output, expected_output)
Example #2
0
    def test_is_pickleable(self, filters, strides):
        model = CNNModel(filters=filters,
                         strides=strides,
                         name='cnn_model',
                         padding='VALID',
                         hidden_w_init=tf.constant_initializer(1),
                         hidden_nonlinearity=None)
        outputs = model.build(self._input_ph).outputs
        with tf.compat.v1.variable_scope('cnn_model/cnn/h0', reuse=True):
            bias = tf.compat.v1.get_variable('bias')
        bias.load(tf.ones_like(bias).eval())

        output1 = self.sess.run(outputs,
                                feed_dict={self._input_ph: self.obs_input})
        h = pickle.dumps(model)
        with tf.compat.v1.Session(graph=tf.Graph()) as sess:
            model_pickled = pickle.loads(h)
            # pylint: disable=unsubscriptable-object
            input_shape = self.obs_input.shape[1:]  # height, width, channel
            input_ph = tf.compat.v1.placeholder(tf.float32,
                                                shape=(None, ) + input_shape,
                                                name='input')
            outputs = model_pickled.build(input_ph).outputs
            output2 = sess.run(outputs, feed_dict={input_ph: self.obs_input})

            assert np.array_equal(output1, output2)
Example #3
0
    def test_is_pickleable(self, filter_sizes, in_channels, out_channels,
                           strides):
        model = CNNModel(filter_dims=filter_sizes,
                         num_filters=out_channels,
                         strides=strides,
                         name='cnn_model',
                         padding='VALID',
                         hidden_w_init=tf.constant_initializer(1),
                         hidden_nonlinearity=None)
        outputs = model.build(self._input_ph)
        with tf.variable_scope('cnn_model/cnn/h0', reuse=True):
            bias = tf.get_variable('bias')
        self.sess.run(tf.assign(bias, tf.ones_like(bias)))

        output1 = self.sess.run(outputs,
                                feed_dict={self._input_ph: self.obs_input})
        h = pickle.dumps(model)
        with tf.Session(graph=tf.Graph()) as sess:
            model_pickled = pickle.loads(h)
            input_shape = self.obs_input.shape[1:]  # height, width, channel
            input_ph = tf.placeholder(tf.float32,
                                      shape=(None, ) + input_shape,
                                      name='input')
            outputs = model_pickled.build(input_ph)
            output2 = sess.run(outputs, feed_dict={input_ph: self.obs_input})

            assert np.array_equal(output1, output2)
Example #4
0
    def __init__(self,
                 env_spec,
                 conv_filters,
                 conv_filter_sizes,
                 conv_strides,
                 conv_pad,
                 name='CategoricalCNNPolicy',
                 hidden_sizes=(32, 32),
                 hidden_nonlinearity=tf.nn.relu,
                 hidden_w_init=tf.initializers.glorot_uniform(),
                 hidden_b_init=tf.zeros_initializer(),
                 output_nonlinearity=tf.nn.softmax,
                 output_w_init=tf.initializers.glorot_uniform(),
                 output_b_init=tf.zeros_initializer(),
                 layer_normalization=False):
        if not isinstance(env_spec.action_space, akro.Discrete):
            raise ValueError(
                'CategoricalCNNPolicy only works with akro.Discrete action '
                'space.')

        if not isinstance(env_spec.observation_space, akro.Box) or \
                not len(env_spec.observation_space.shape) in (2, 3):
            raise ValueError(
                '{} can only process 2D, 3D akro.Image or'
                ' akro.Box observations, but received an env_spec with '
                'observation_space of type {} and shape {}'.format(
                    type(self).__name__,
                    type(env_spec.observation_space).__name__,
                    env_spec.observation_space.shape))

        super().__init__(name, env_spec)
        self.obs_dim = env_spec.observation_space.shape
        self.action_dim = env_spec.action_space.n

        self.model = Sequential(
            CNNModel(filter_dims=conv_filter_sizes,
                     num_filters=conv_filters,
                     strides=conv_strides,
                     padding=conv_pad,
                     hidden_nonlinearity=hidden_nonlinearity,
                     name='CNNModel'),
            MLPModel(output_dim=self.action_dim,
                     hidden_sizes=hidden_sizes,
                     hidden_nonlinearity=hidden_nonlinearity,
                     hidden_w_init=hidden_w_init,
                     hidden_b_init=hidden_b_init,
                     output_nonlinearity=output_nonlinearity,
                     output_w_init=output_w_init,
                     output_b_init=output_b_init,
                     layer_normalization=layer_normalization,
                     name='MLPModel'))

        self._initialize()
Example #5
0
    def __init__(self,
                 env_spec,
                 conv_filters,
                 conv_filter_sizes,
                 conv_strides,
                 conv_pad,
                 name='CategoricalConvPolicy',
                 hidden_sizes=[],
                 hidden_nonlinearity=tf.nn.relu,
                 hidden_w_init=tf.glorot_uniform_initializer(),
                 hidden_b_init=tf.zeros_initializer(),
                 output_nonlinearity=tf.nn.softmax,
                 output_w_init=tf.glorot_uniform_initializer(),
                 output_b_init=tf.zeros_initializer(),
                 layer_normalization=False):
        assert isinstance(env_spec.action_space, akro.Discrete), (
            'CategoricalConvPolicy only works with akro.Discrete action '
            'space.')
        super().__init__(name, env_spec)
        self.obs_dim = env_spec.observation_space.shape
        self.action_dim = env_spec.action_space.n

        self.model = Sequential(
            CNNModel(
                filter_dims=conv_filter_sizes,
                num_filters=conv_filters,
                strides=conv_strides,
                padding=conv_pad,
                hidden_nonlinearity=hidden_nonlinearity,
                name='CNNModel'),
            MLPModel(
                output_dim=self.action_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                hidden_w_init=hidden_w_init,
                hidden_b_init=hidden_b_init,
                output_nonlinearity=output_nonlinearity,
                output_w_init=output_w_init,
                output_b_init=output_b_init,
                layer_normalization=layer_normalization,
                name='MLPModel'))

        self._initialize()
Example #6
0
    def __init__(self,
                 env_spec,
                 filters,
                 strides,
                 hidden_sizes=(256, ),
                 name=None,
                 padding='SAME',
                 max_pooling=False,
                 pool_strides=(2, 2),
                 pool_shapes=(2, 2),
                 cnn_hidden_nonlinearity=tf.nn.relu,
                 hidden_nonlinearity=tf.nn.relu,
                 hidden_w_init=tf.initializers.glorot_uniform(),
                 hidden_b_init=tf.zeros_initializer(),
                 output_nonlinearity=None,
                 output_w_init=tf.initializers.glorot_uniform(),
                 output_b_init=tf.zeros_initializer(),
                 dueling=False,
                 layer_normalization=False):
        if not isinstance(env_spec.observation_space, akro.Box) or \
                not len(env_spec.observation_space.shape) in (2, 3):
            raise ValueError(
                '{} can only process 2D, 3D akro.Image or'
                ' akro.Box observations, but received an env_spec with '
                'observation_space of type {} and shape {}'.format(
                    type(self).__name__,
                    type(env_spec.observation_space).__name__,
                    env_spec.observation_space.shape))

        super().__init__(name)
        self._env_spec = env_spec
        self._action_dim = env_spec.action_space.n
        self._filters = filters
        self._strides = strides
        self._hidden_sizes = hidden_sizes
        self._padding = padding
        self._max_pooling = max_pooling
        self._pool_strides = pool_strides
        self._pool_shapes = pool_shapes
        self._cnn_hidden_nonlinearity = cnn_hidden_nonlinearity
        self._hidden_nonlinearity = hidden_nonlinearity
        self._hidden_w_init = hidden_w_init
        self._hidden_b_init = hidden_b_init
        self._output_nonlinearity = output_nonlinearity
        self._output_w_init = output_w_init
        self._output_b_init = output_b_init
        self._layer_normalization = layer_normalization
        self._dueling = dueling

        self.obs_dim = self._env_spec.observation_space.shape
        action_dim = self._env_spec.action_space.flat_dim

        if not max_pooling:
            cnn_model = CNNModel(filters=filters,
                                 strides=strides,
                                 padding=padding,
                                 hidden_nonlinearity=cnn_hidden_nonlinearity)
        else:
            cnn_model = CNNModelWithMaxPooling(
                filters=filters,
                strides=strides,
                padding=padding,
                pool_strides=pool_strides,
                pool_shapes=pool_shapes,
                hidden_nonlinearity=cnn_hidden_nonlinearity)
        if not dueling:
            output_model = MLPModel(output_dim=action_dim,
                                    hidden_sizes=hidden_sizes,
                                    hidden_nonlinearity=hidden_nonlinearity,
                                    hidden_w_init=hidden_w_init,
                                    hidden_b_init=hidden_b_init,
                                    output_nonlinearity=output_nonlinearity,
                                    output_w_init=output_w_init,
                                    output_b_init=output_b_init,
                                    layer_normalization=layer_normalization)
        else:
            output_model = MLPDuelingModel(
                output_dim=action_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                hidden_w_init=hidden_w_init,
                hidden_b_init=hidden_b_init,
                output_nonlinearity=output_nonlinearity,
                output_w_init=output_w_init,
                output_b_init=output_b_init,
                layer_normalization=layer_normalization)

        self.model = Sequential(cnn_model, output_model)

        self._initialize()
    def __init__(self,
                 env_spec,
                 filter_dims,
                 num_filters,
                 strides,
                 hidden_sizes=[256],
                 name=None,
                 padding='SAME',
                 max_pooling=False,
                 pool_strides=(2, 2),
                 pool_shapes=(2, 2),
                 cnn_hidden_nonlinearity=tf.nn.relu,
                 hidden_nonlinearity=tf.nn.relu,
                 hidden_w_init=tf.glorot_uniform_initializer(),
                 hidden_b_init=tf.zeros_initializer(),
                 output_nonlinearity=None,
                 output_w_init=tf.glorot_uniform_initializer(),
                 output_b_init=tf.zeros_initializer(),
                 dueling=False,
                 layer_normalization=False):
        super().__init__(name)
        self._env_spec = env_spec
        self._action_dim = env_spec.action_space.n
        self._filter_dims = filter_dims
        self._num_filters = num_filters
        self._strides = strides
        self._hidden_sizes = hidden_sizes
        self._padding = padding
        self._max_pooling = max_pooling
        self._pool_strides = pool_strides
        self._pool_shapes = pool_shapes
        self._cnn_hidden_nonlinearity = cnn_hidden_nonlinearity
        self._hidden_nonlinearity = hidden_nonlinearity
        self._hidden_w_init = hidden_w_init
        self._hidden_b_init = hidden_b_init
        self._output_nonlinearity = output_nonlinearity
        self._output_w_init = output_w_init
        self._output_b_init = output_b_init
        self._layer_normalization = layer_normalization
        self._dueling = dueling

        self.obs_dim = self._env_spec.observation_space.shape
        action_dim = self._env_spec.action_space.flat_dim

        if not max_pooling:
            cnn_model = CNNModel(filter_dims=filter_dims,
                                 num_filters=num_filters,
                                 strides=strides,
                                 padding=padding,
                                 hidden_nonlinearity=cnn_hidden_nonlinearity)
        else:
            cnn_model = CNNModelWithMaxPooling(
                filter_dims=filter_dims,
                num_filters=num_filters,
                strides=strides,
                padding=padding,
                pool_strides=pool_strides,
                pool_shapes=pool_shapes,
                hidden_nonlinearity=cnn_hidden_nonlinearity)
        if not dueling:
            output_model = MLPModel(output_dim=action_dim,
                                    hidden_sizes=hidden_sizes,
                                    hidden_nonlinearity=hidden_nonlinearity,
                                    hidden_w_init=hidden_w_init,
                                    hidden_b_init=hidden_b_init,
                                    output_nonlinearity=output_nonlinearity,
                                    output_w_init=output_w_init,
                                    output_b_init=output_b_init,
                                    layer_normalization=layer_normalization)
        else:
            output_model = MLPDuelingModel(
                output_dim=action_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                hidden_w_init=hidden_w_init,
                hidden_b_init=hidden_b_init,
                output_nonlinearity=output_nonlinearity,
                output_w_init=output_w_init,
                output_b_init=output_b_init,
                layer_normalization=layer_normalization)

        self.model = Sequential(cnn_model, output_model)

        self._initialize()