def test_is_pickleable(self, filters, strides): model = CNNModel(filters=filters, strides=strides, name='cnn_model', padding='VALID', hidden_w_init=tf.constant_initializer(1), hidden_nonlinearity=None) outputs = model.build(self._input_ph).outputs with tf.compat.v1.variable_scope('cnn_model/cnn/h0', reuse=True): bias = tf.compat.v1.get_variable('bias') bias.load(tf.ones_like(bias).eval()) output1 = self.sess.run(outputs, feed_dict={self._input_ph: self.obs_input}) h = pickle.dumps(model) with tf.compat.v1.Session(graph=tf.Graph()) as sess: model_pickled = pickle.loads(h) # pylint: disable=unsubscriptable-object input_shape = self.obs_input.shape[1:] # height, width, channel input_ph = tf.compat.v1.placeholder(tf.float32, shape=(None, ) + input_shape, name='input') outputs = model_pickled.build(input_ph).outputs output2 = sess.run(outputs, feed_dict={input_ph: self.obs_input}) assert np.array_equal(output1, output2)
def test_output_value(self, filters, in_channels, strides): model = CNNModel(filters=filters, strides=strides, name='cnn_model', padding='VALID', hidden_w_init=tf.constant_initializer(1), hidden_nonlinearity=None) outputs = model.build(self._input_ph).outputs output = self.sess.run(outputs, feed_dict={self._input_ph: self.obs_input}) filter_sum = 1 # filter value after 3 layers of conv for filter_iter, in_channel in zip(filters, in_channels): filter_sum *= filter_iter[1][0] * filter_iter[1][1] * in_channel height_size = self.input_height width_size = self.input_width for filter_iter, stride in zip(filters, strides): height_size = int((height_size - filter_iter[1][0]) / stride) + 1 width_size = int((width_size - filter_iter[1][1]) / stride) + 1 flatten_shape = height_size * width_size * filters[-1][0] # flatten expected_output = np.full((self.batch_size, flatten_shape), filter_sum, dtype=np.float32) assert np.array_equal(output, expected_output)
def test_is_pickleable(self, filter_sizes, in_channels, out_channels, strides): model = CNNModel(filter_dims=filter_sizes, num_filters=out_channels, strides=strides, name='cnn_model', padding='VALID', hidden_w_init=tf.constant_initializer(1), hidden_nonlinearity=None) outputs = model.build(self._input_ph) with tf.variable_scope('cnn_model/cnn/h0', reuse=True): bias = tf.get_variable('bias') self.sess.run(tf.assign(bias, tf.ones_like(bias))) output1 = self.sess.run(outputs, feed_dict={self._input_ph: self.obs_input}) h = pickle.dumps(model) with tf.Session(graph=tf.Graph()) as sess: model_pickled = pickle.loads(h) input_shape = self.obs_input.shape[1:] # height, width, channel input_ph = tf.placeholder(tf.float32, shape=(None, ) + input_shape, name='input') outputs = model_pickled.build(input_ph) output2 = sess.run(outputs, feed_dict={input_ph: self.obs_input}) assert np.array_equal(output1, output2)