def main(args): if args.model_type == 'bert' and (args.pad_token != '[PAD]' or args.start_special_token != '[SEP]' or args.end_special_token != '[SEP]'): raise ValueError("BERT already has its own special tokens [PAD] and [SEP]. You should use them for better results.") if args.do_train: if args.train_data_file is None: raise ValueError("Cannot do training without a training data file. Either supply a file to --train_data_file " "or remove the --do_train argument.") if args.tensorboard_dir is None: raise ValueError("Cannot do training without specifying --tensorboard_dir") if args.eval_data_file is None and args.do_eval: raise ValueError("Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument.") if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None) tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) if args.block_size <= 0: args.block_size = tokenizer.max_len_single_sentence # Our input block size will be the max possible for the model args.block_size = min(args.block_size, tokenizer.max_len_single_sentence) model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None) add_special_tokens(model, tokenizer, additional_special_tokens=[args.start_special_token, args.end_special_token], pad_token=args.pad_token) model.to(args.device) if args.local_rank == 0: torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False) if args.local_rank == 0: torch.distributed.barrier() global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) result = dict((k + '_{}'.format(global_step), v) for k, v in result.items()) results.update(result) return results
def train(args, train_dataset, model, tokenizer): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter(logdir=args.tensorboard_dir) args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) if args.sort_by_length: train_sampler = LengthSortedSampler(train_dataset, batch_size=args.train_batch_size*args.gradient_accumulation_steps, shuffle=True) else: train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=train_dataset.collate_fn) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) if args.scheduler == 'linear': scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total) elif args.scheduler == 'transformer': if args.model_type == 'bert': dimension = model.config.hidden_size elif args.model_type == 'gpt2': dimension = model.config.n_embd else: logger.error('Cannot detect hidden size dimensions in this model type. Config: %s', model.config) scheduler = get_transformer_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total, dimension=dimension) else: logger.error('Unknown scheduler type.') # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, 'optimizer.pt')) and os.path.isfile(os.path.join(args.model_name_or_path, 'scheduler.pt')): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, 'optimizer.pt'))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, 'scheduler.pt'))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): # set global_step to gobal_step of last saved checkpoint from model path global_step = int(args.model_name_or_path.split('-')[-1].split('/')[0]) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = (global_step % (len(train_dataloader) // args.gradient_accumulation_steps)) * args.gradient_accumulation_steps logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tr_loss, logging_loss = 0.0, 0.0 model_to_resize = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_resize.resize_token_embeddings(len(tokenizer)) model.zero_grad() train_iterator = prange(epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproducibility (even between python 2 and 3) best_eval_perplexity = float('Inf') for _ in train_iterator: if args.max_steps > 0: total_steps = args.max_steps*args.gradient_accumulation_steps else: total_steps = len(train_dataloader) epoch_iterator = progress_bar(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0], total=total_steps) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue inputs, labels, position_ids, segment_ids = batch # batch is a tuple (input, labels, position_ids, segment_ids) if args.mlm: inputs, labels = mask_tokens(inputs, labels, tokenizer, args.mlm_probability, args.mlm_ignore_index) inputs = inputs.to(args.device) labels = labels.to(args.device) position_ids = position_ids.to(args.device) segment_ids = segment_ids.to(args.device) model.train() model_inputs = {'input_ids': inputs, 'position_ids': position_ids, 'token_type_ids': segment_ids} # prepare inputs for bart if args.model_type in ['bart', 'mbart']: # this should have been handled internally by huggingfaces's BART code # TODO remove this once they add it decoder_input_ids = labels[:, :-1].contiguous() decoder_input_ids[decoder_input_ids == args.mlm_ignore_index] = tokenizer.pad_token_id lm_labels = labels[:, 1:].clone() model_inputs['decoder_input_ids'] = decoder_input_ids model_inputs['lm_labels'] = lm_labels # other models else: if args.mlm: model_inputs['masked_lm_labels'] = labels else: model_inputs['labels'] = labels outputs = model(**model_inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and ((args.logging_steps > 0 and global_step % args.logging_steps == 0) or global_step == total_steps-1): # Log metrics if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) if args.aux_eval_data_file is not None: aux_results = evaluate(args, model, tokenizer, aux=True) for key, value in aux_results.items(): tb_writer.add_scalar('auxiliary_eval_{}'.format(key), value, global_step) if best_eval_perplexity > results['perplexity']: best_eval_perplexity = results['perplexity'] if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) logger.info("Saving new best model to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) for key, value in results.items(): tb_writer.add_scalar('eval_{}'.format(key), value, global_step) # TODO add generated text to tensorboard # tb_writer.add_text('eval/generated_text', gen_text, global_step) tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step) tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0 and args.save_total_limit > 0: checkpoint_prefix = 'checkpoint' # Save model checkpoint output_dir = os.path.join(args.output_dir, '{}-{}'.format(checkpoint_prefix, global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) _rotate_checkpoints(args, checkpoint_prefix) torch.save(optimizer.state_dict(), os.path.join(output_dir, 'optimizer.pt')) torch.save(scheduler.state_dict(), os.path.join(output_dir, 'scheduler.pt')) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step
def main(args): if args.model_type == 'bert' and (args.pad_token != '[PAD]' or args.start_special_token != '[SEP]' or args.end_special_token != '[SEP]'): raise ValueError("BERT already has its own special tokens [PAD] and [SEP]. You should use them for better results.") if args.do_train: if args.train_data_file is None: raise ValueError("Cannot do training without a training data file. Either supply a file to --train_data_file " "or remove the --do_train argument.") if args.tensorboard_dir is None: raise ValueError("Cannot do training without specifying --tensorboard_dir") if args.eval_data_file is None and args.do_eval: raise ValueError("Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument.") if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train: # clean all files within the directory if args.overwrite_output_dir: shutil.rmtree(args.output_dir) else: raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) check_args(args) if args.gold_column is None: args.gold_column = args.input_column # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None) tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, use_fast=not args.no_fast_tokenizer) if args.block_size <= 0: args.block_size = tokenizer.max_len_single_sentence # Our input block size will be the max possible for the model args.block_size = min(args.block_size, tokenizer.max_len_single_sentence) if args.no_pretraining: # only load model architecture but not the weights model = model_class(config) else: model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None) add_special_tokens(model, tokenizer, additional_special_tokens=[args.start_special_token, args.end_special_token], pad_token=args.pad_token) model.to(args.device) if args.freeze_embeds: freeze_embeds(model) if args.freeze_encoder: freeze_params(model.get_encoder()) if args.freeze_decoder: if args.model_type in ['bart', 'mbart', 'marian']: freeze_params(model.model.decoder) if args.local_rank == 0: torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab logger.info("Training/evaluation parameters %s", args) model_input_prefix = '' if args.model_type == 'marian' and args.tgt_lang: # TODO check if extra space after pattern is necessary model_input_prefix = '>>{}<< '.format(args.tgt_lang) elif args.model_type == 't5': if args.task == 'translate': t5_task = 'translation_{}_to_{}'.format(args.src_lang, args.tgt_lang) else: t5_task = 'summarization' model_input_prefix = config.task_specific_params[t5_task]['prefix'] args.model_input_prefix = model_input_prefix # Training if args.do_train: if args.num_input_chunks > 1: all_input_files = split_file_on_disk(args.train_data_file, args.num_input_chunks, delete=args.delete_after_chunking) global_step, epochs_trained, total_tr_loss = 0, 0, 0.0 for n in range(args.num_train_epochs): for i in range(args.num_input_chunks): if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache train_dataset = TextDataset(tokenizer, args, file_path=all_input_files[i], block_size=args.block_size, evaluate=True) if args.local_rank == 0: torch.distributed.barrier() global_step, tr_loss = train(args, train_dataset, model, tokenizer, all_input_files[i], True, global_step, epochs_trained) total_tr_loss += tr_loss epochs_trained += 1 logger.info(" global_step = %s, average loss = %s", global_step, total_tr_loss / global_step) for file in all_input_files: os.remove(file) else: if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache train_dataset = TextDataset(tokenizer, args, file_path=args.train_data_file, block_size=args.block_size, evaluate=True) if args.local_rank == 0: torch.distributed.barrier() global_step, tr_loss = train(args, train_dataset, model, tokenizer, args.train_data_file, False) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss / global_step) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) result = dict((k + '_{}'.format(global_step), v) for k, v in result.items()) results.update(result) return results