Exemplo n.º 1
0
def main(args):
    if args.model_type == 'bert' and (args.pad_token != '[PAD]' or args.start_special_token != '[SEP]' or args.end_special_token != '[SEP]'):
        raise ValueError("BERT already has its own special tokens [PAD] and [SEP]. You should use them for better results.")
    if args.do_train:
        if args.train_data_file is None:
            raise ValueError("Cannot do training without a training data file. Either supply a file to --train_data_file "
                            "or remove the --do_train argument.")
        if args.tensorboard_dir is None:
            raise ValueError("Cannot do training without specifying --tensorboard_dir")

    if args.eval_data_file is None and args.do_eval:
        raise ValueError("Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
                         "or remove the --do_eval argument.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    if args.block_size <= 0:
        args.block_size = tokenizer.max_len_single_sentence  # Our input block size will be the max possible for the model
    args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
    add_special_tokens(model, tokenizer, additional_special_tokens=[args.start_special_token, args.end_special_token], pad_token=args.pad_token)
    model.to(args.device)

    if args.local_rank == 0:
        torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocab

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        if args.local_rank not in [-1, 0]:
            torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache

        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)

        if args.local_rank == 0:
            torch.distributed.barrier()

        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)


    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

    return results
Exemplo n.º 2
0
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter(logdir=args.tensorboard_dir)

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    if args.sort_by_length:
        train_sampler = LengthSortedSampler(train_dataset, batch_size=args.train_batch_size*args.gradient_accumulation_steps, shuffle=True)
    else:
        train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=train_dataset.collate_fn)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)

    if args.scheduler == 'linear':
        scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
    elif args.scheduler == 'transformer':
        if args.model_type == 'bert':
            dimension = model.config.hidden_size
        elif args.model_type == 'gpt2':
            dimension = model.config.n_embd
        else:
            logger.error('Cannot detect hidden size dimensions in this model type. Config: %s', model.config)
        scheduler = get_transformer_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total, dimension=dimension)
    else:
        logger.error('Unknown scheduler type.')

    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(args.model_name_or_path, 'optimizer.pt')) and os.path.isfile(os.path.join(args.model_name_or_path, 'scheduler.pt')):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, 'optimizer.pt')))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, 'scheduler.pt')))

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split('-')[-1].split('/')[0])
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = (global_step % (len(train_dataloader) // args.gradient_accumulation_steps)) * args.gradient_accumulation_steps

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

    tr_loss, logging_loss = 0.0, 0.0

    model_to_resize = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
    model_to_resize.resize_token_embeddings(len(tokenizer))

    model.zero_grad()
    train_iterator = prange(epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproducibility (even between python 2 and 3)
    best_eval_perplexity = float('Inf')
    for _ in train_iterator:
        if args.max_steps > 0:
            total_steps = args.max_steps*args.gradient_accumulation_steps
        else:
            total_steps = len(train_dataloader)
        epoch_iterator = progress_bar(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0], total=total_steps)
        for step, batch in enumerate(epoch_iterator):
            
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

            inputs, labels, position_ids, segment_ids = batch # batch is a tuple (input, labels, position_ids, segment_ids)
            
            if args.mlm:
                inputs, labels = mask_tokens(inputs, labels, tokenizer, args.mlm_probability, args.mlm_ignore_index)
            inputs = inputs.to(args.device)
            labels = labels.to(args.device)
            position_ids = position_ids.to(args.device)
            segment_ids = segment_ids.to(args.device)
            model.train()
            
            model_inputs = {'input_ids': inputs, 'position_ids': position_ids, 'token_type_ids': segment_ids}
            
            # prepare inputs for bart
            if args.model_type in ['bart', 'mbart']:
                # this should have been handled internally by huggingfaces's BART code
                # TODO remove this once they add it
                decoder_input_ids = labels[:, :-1].contiguous()
                decoder_input_ids[decoder_input_ids == args.mlm_ignore_index] = tokenizer.pad_token_id
                lm_labels = labels[:, 1:].clone()
                model_inputs['decoder_input_ids'] = decoder_input_ids
                model_inputs['lm_labels'] = lm_labels
            
            # other models
            else:
                if args.mlm:
                    model_inputs['masked_lm_labels'] = labels
                else:
                    model_inputs['labels'] = labels
                
            outputs = model(**model_inputs)
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and ((args.logging_steps > 0 and global_step % args.logging_steps == 0) or global_step == total_steps-1):
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        if args.aux_eval_data_file is not None:
                            aux_results = evaluate(args, model, tokenizer, aux=True)
                            for key, value in aux_results.items():
                                tb_writer.add_scalar('auxiliary_eval_{}'.format(key), value, global_step)
                        if best_eval_perplexity > results['perplexity']:
                            best_eval_perplexity = results['perplexity']
                            if not os.path.exists(args.output_dir):
                                os.makedirs(args.output_dir)
                            logger.info("Saving new best model to %s", args.output_dir)
                            # Save a trained model, configuration and tokenizer using `save_pretrained()`.
                            # They can then be reloaded using `from_pretrained()`
                            model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                            model_to_save.save_pretrained(args.output_dir)
                            tokenizer.save_pretrained(args.output_dir)

                            # Good practice: save your training arguments together with the trained model
                            torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    # TODO add generated text to tensorboard
                    # tb_writer.add_text('eval/generated_text', gen_text, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0 and args.save_total_limit > 0:
                    checkpoint_prefix = 'checkpoint'
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, '{}-{}'.format(checkpoint_prefix, global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)

                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

                    _rotate_checkpoints(args, checkpoint_prefix)

                    torch.save(optimizer.state_dict(), os.path.join(output_dir, 'optimizer.pt'))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, 'scheduler.pt'))
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step
Exemplo n.º 3
0
def main(args):
    if args.model_type == 'bert' and (args.pad_token != '[PAD]' or args.start_special_token != '[SEP]' or args.end_special_token != '[SEP]'):
        raise ValueError("BERT already has its own special tokens [PAD] and [SEP]. You should use them for better results.")
    if args.do_train:
        if args.train_data_file is None:
            raise ValueError("Cannot do training without a training data file. Either supply a file to --train_data_file "
                            "or remove the --do_train argument.")
        if args.tensorboard_dir is None:
            raise ValueError("Cannot do training without specifying --tensorboard_dir")

    if args.eval_data_file is None and args.do_eval:
        raise ValueError("Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
                         "or remove the --do_eval argument.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        # clean all files within the directory
        if args.overwrite_output_dir:
            shutil.rmtree(args.output_dir)
        else:
            raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
    
    
    check_args(args)
    
    if args.gold_column is None:
        args.gold_column = args.input_column

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None,
                                                use_fast=not args.no_fast_tokenizer)
    if args.block_size <= 0:
        args.block_size = tokenizer.max_len_single_sentence  # Our input block size will be the max possible for the model
    args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
    
    if args.no_pretraining:
        # only load model architecture but not the weights
        model = model_class(config)
    else:
        model = model_class.from_pretrained(args.model_name_or_path,
                                            from_tf=bool('.ckpt' in args.model_name_or_path),
                                            config=config,
                                            cache_dir=args.cache_dir if args.cache_dir else None)
    
    add_special_tokens(model, tokenizer, additional_special_tokens=[args.start_special_token, args.end_special_token], pad_token=args.pad_token)
    model.to(args.device)

    if args.freeze_embeds:
        freeze_embeds(model)
    if args.freeze_encoder:
        freeze_params(model.get_encoder())
    if args.freeze_decoder:
        if args.model_type in ['bart', 'mbart', 'marian']:
            freeze_params(model.model.decoder)

    if args.local_rank == 0:
        torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocab

    logger.info("Training/evaluation parameters %s", args)

    model_input_prefix = ''
    if args.model_type == 'marian' and args.tgt_lang:
        # TODO check if extra space after pattern is necessary
        model_input_prefix = '>>{}<< '.format(args.tgt_lang)
    elif args.model_type == 't5':
        if args.task == 'translate':
            t5_task = 'translation_{}_to_{}'.format(args.src_lang, args.tgt_lang)
        else:
            t5_task = 'summarization'
        model_input_prefix = config.task_specific_params[t5_task]['prefix']
    args.model_input_prefix = model_input_prefix

    # Training
    if args.do_train:
        
        if args.num_input_chunks > 1:
    
            all_input_files = split_file_on_disk(args.train_data_file, args.num_input_chunks, delete=args.delete_after_chunking)
            global_step, epochs_trained, total_tr_loss = 0, 0, 0.0
            
            for n in range(args.num_train_epochs):
                
                for i in range(args.num_input_chunks):
                
                    if args.local_rank not in [-1, 0]:
                        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache
                    
                    train_dataset = TextDataset(tokenizer, args, file_path=all_input_files[i], block_size=args.block_size, evaluate=True)
            
                    if args.local_rank == 0:
                        torch.distributed.barrier()
    
                    global_step, tr_loss = train(args, train_dataset, model, tokenizer, all_input_files[i], True, global_step, epochs_trained)
                    total_tr_loss += tr_loss

                epochs_trained += 1

                logger.info(" global_step = %s, average loss = %s", global_step, total_tr_loss / global_step)
            
            for file in all_input_files:
                os.remove(file)
            
        else:
            if args.local_rank not in [-1, 0]:
                torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache

            train_dataset = TextDataset(tokenizer, args, file_path=args.train_data_file, block_size=args.block_size, evaluate=True)

            if args.local_rank == 0:
                torch.distributed.barrier()

            global_step, tr_loss = train(args, train_dataset, model, tokenizer, args.train_data_file, False)
            
            logger.info(" global_step = %s, average loss = %s", global_step, tr_loss / global_step)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

    return results