Example #1
0
    def test_specify_support_twice(self):
        #
        # TODO: Haven't done it for precision yet
        #
        oort = 1 / np.sqrt(2)
        V = np.array([[0.5, oort, 0, 0.5], [0.5, 0, -oort, -0.5],
                      [0.5, -oort, 0, 0.5], [0.5, 0, oort, -0.5]])

        # Eigenvalues
        d = np.array([4, 0, 2, 0], dtype=float)
        Lmd = np.diag(d)

        # Covariance matrix
        K = V.dot(Lmd.dot(V.T))

        #
        # Restrict subspace in two steps
        #
        # Field with predefined subspace
        u = GaussianField(4, K=K, mode='covariance', support=V[:, 0:3])

        # Further restrict subspace (automatically)
        u.update_support()

        #
        # Reduce subspace at once
        #
        v = GaussianField(4, K=K, mode='covariance', support=V[:, [0, 2]])

        # Check that the supports are the same
        U = u.support()
        V = v.support()

        self.assertTrue(np.allclose(U - V.dot(V.T.dot(U)), np.zeros(U.shape)))
        self.assertTrue(np.allclose(V - U.dot(U.T.dot(V)), np.zeros(V.shape)))
Example #2
0
    def test_degenerate_sample(self):
        """
        Test support and reduced covariance 
        """
        oort = 1 / np.sqrt(2)
        V = np.array([[0.5, oort, 0, 0.5], [0.5, 0, -oort, -0.5],
                      [0.5, -oort, 0, 0.5], [0.5, 0, oort, -0.5]])

        # Eigenvalues
        d = np.array([4, 3, 2, 0], dtype=float)
        Lmd = np.diag(d)

        # Covariance matrix
        K = V.dot(Lmd.dot(V.T))

        # Zero mean Gaussian field
        u_ex = GaussianField(4, K=K, mode='covariance', support=V[:, 0:3])
        u_im = GaussianField(4, K=K, mode='covariance')
        u_im.update_support()

        # Check reduced covariances
        self.assertTrue(
            np.allclose(u_ex.covariance().get_matrix(),
                        u_im.covariance().get_matrix().toarray()))

        # Check supports
        V_ex = u_ex.support()
        V_im = u_im.support()

        # Ensure they have the same sign
        for i in range(V_ex.shape[1]):
            if V_ex[0, i] < 0:
                V_ex[:, i] = -V_ex[:, i]

            if V_im[0, i] < 0:
                V_im[:, i] = -V_im[:, i]

        self.assertTrue(np.allclose(V_ex, V_im))
        u_ex.set_support(V_ex)
        u_im.set_support(V_im)

        # Compare samples
        z = u_ex.iid_gauss(n_samples=1)
        u_ex_smp = u_ex.sample(z=z, decomposition='chol')
        u_im_smp = u_im.sample(z=z, decomposition='chol')
        self.assertTrue(np.allclose(u_ex_smp, u_im_smp))