Example #1
0
    def test_specify_support_twice(self):
        #
        # TODO: Haven't done it for precision yet
        #
        oort = 1 / np.sqrt(2)
        V = np.array([[0.5, oort, 0, 0.5], [0.5, 0, -oort, -0.5],
                      [0.5, -oort, 0, 0.5], [0.5, 0, oort, -0.5]])

        # Eigenvalues
        d = np.array([4, 0, 2, 0], dtype=float)
        Lmd = np.diag(d)

        # Covariance matrix
        K = V.dot(Lmd.dot(V.T))

        #
        # Restrict subspace in two steps
        #
        # Field with predefined subspace
        u = GaussianField(4, K=K, mode='covariance', support=V[:, 0:3])

        # Further restrict subspace (automatically)
        u.update_support()

        #
        # Reduce subspace at once
        #
        v = GaussianField(4, K=K, mode='covariance', support=V[:, [0, 2]])

        # Check that the supports are the same
        U = u.support()
        V = v.support()

        self.assertTrue(np.allclose(U - V.dot(V.T.dot(U)), np.zeros(U.shape)))
        self.assertTrue(np.allclose(V - U.dot(U.T.dot(V)), np.zeros(V.shape)))
Example #2
0
    def test_degenerate_sample(self):
        """
        Test support and reduced covariance 
        """
        oort = 1 / np.sqrt(2)
        V = np.array([[0.5, oort, 0, 0.5], [0.5, 0, -oort, -0.5],
                      [0.5, -oort, 0, 0.5], [0.5, 0, oort, -0.5]])

        # Eigenvalues
        d = np.array([4, 3, 2, 0], dtype=float)
        Lmd = np.diag(d)

        # Covariance matrix
        K = V.dot(Lmd.dot(V.T))

        # Zero mean Gaussian field
        u_ex = GaussianField(4, K=K, mode='covariance', support=V[:, 0:3])
        u_im = GaussianField(4, K=K, mode='covariance')
        u_im.update_support()

        # Check reduced covariances
        self.assertTrue(
            np.allclose(u_ex.covariance().get_matrix(),
                        u_im.covariance().get_matrix().toarray()))

        # Check supports
        V_ex = u_ex.support()
        V_im = u_im.support()

        # Ensure they have the same sign
        for i in range(V_ex.shape[1]):
            if V_ex[0, i] < 0:
                V_ex[:, i] = -V_ex[:, i]

            if V_im[0, i] < 0:
                V_im[:, i] = -V_im[:, i]

        self.assertTrue(np.allclose(V_ex, V_im))
        u_ex.set_support(V_ex)
        u_im.set_support(V_im)

        # Compare samples
        z = u_ex.iid_gauss(n_samples=1)
        u_ex_smp = u_ex.sample(z=z, decomposition='chol')
        u_im_smp = u_im.sample(z=z, decomposition='chol')
        self.assertTrue(np.allclose(u_ex_smp, u_im_smp))
Example #3
0
def test02_variance():
    """
    Compute the variance of J(q) for different mesh refinement levels
    and compare with MC estimates. 
    """
    l_max = 8
    for i_res in np.arange(2, l_max):

        # Computational mesh
        mesh = Mesh1D(resolution=(2**i_res, ))

        # Element
        element = QuadFE(mesh.dim(), 'DQ0')
        dofhandler = DofHandler(mesh, element)
        dofhandler.distribute_dofs()

        # Linear Functional
        mesh.mark_region('integrate',
                         lambda x: x >= 0.75,
                         entity_type='cell',
                         strict_containment=False)
        phi = Basis(dofhandler)
        assembler = Assembler(Form(4, test=phi, flag='integrate'))
        assembler.assemble()
        L = assembler.get_vector()

        # Define Gaussian random field
        C = Covariance(dofhandler, name='gaussian', parameters={'l': 0.05})
        C.compute_eig_decomp()

        eta = GaussianField(dofhandler.n_dofs(), K=C)
        eta.update_support()

        n_samples = 100000
        J_paths = L.dot(eta.sample(n_samples=n_samples))
        var_mc = np.var(J_paths)
        lmd, V = C.get_eig_decomp()
        LV = L.dot(V)
        var_an = LV.dot(np.diag(lmd).dot(LV.transpose()))

        print(var_mc, var_an)
Example #4
0
u = Nodal(dofhandler=dh_y, data=u_data, dim=1)


#
# Regularization parameter
# 
#gamma = 0.00001
gamma = 0.1

#
# Random diffusion coefficient
# 
n_samples = 200
cov = Covariance(dh_y, name='gaussian', parameters={'l':0.1})
k = GaussianField(ny, K=cov)
k.update_support()
kfn = Nodal(dofhandler=dh_y, data=k.sample(n_samples=n_samples))

    
# =============================================================================
# Assembly
# =============================================================================
K = Kernel(kfn, F=lambda f:np.exp(f))  # diffusivity

problems = [[Form(K, test=phi_x, trial=phi_x)], 
            [Form(test=phi, trial=phi)]]

assembler = Assembler(problems, mesh)
assembler.assemble()

# Mass matrix (for control)
Example #5
0
# =============================================================================
# Random field
# =============================================================================
n_samples = 10
n_train, n_test = 8, 2
i_train = np.arange(n_train)
i_test = np.arange(n_train, n_samples)

cov = Covariance(dofhandler, name='gaussian', parameters={'l': 0.1})
cov.compute_eig_decomp()
d, V = cov.get_eig_decomp()
plt.semilogy(d, '.')
plt.show()
log_q = GaussianField(n, K=cov)
log_q.update_support()
qfn = Nodal(dofhandler=dofhandler,
            data=np.exp(log_q.sample(n_samples=n_samples)))

plot = Plot()
plot.line(qfn, i_sample=np.arange(n_samples))

# =============================================================================
# Generate Snapshot Set
# =============================================================================
phi = Basis(dofhandler, 'u')
phi_x = Basis(dofhandler, 'ux')

problems = [[Form(kernel=qfn, trial=phi_x, test=phi_x),
             Form(1, test=phi)], [Form(1, test=phi, trial=phi)]]
Example #6
0
        CC.compute_eig_decomp()
        d, V = CC.get_eig_decomp()
        print(d)
        lmd = np.arange(len(d))
        ax.semilogy(lmd, d, '.-', label='level=%d' % i)
    plt.legend()
    plt.show()

    #
    # Define random field on the fine mesh
    #
    C = Covariance(dofhandler, name='gaussian', parameters={'l': 0.05})
    C.compute_eig_decomp()

    eta = GaussianField(dofhandler.n_dofs(), K=C)
    eta.update_support()

    #eta_path = Nodal(data=eta.sample(), basis=phi)
    eta0 = P.dot(eta.sample())
    eg0 = eta.condition(P, eta0, n_samples=100)
    eg0_paths = Nodal(data=eg0, basis=Basis(dofhandler))
    e0_path = Nodal(data=eta0, basis=Basis(dofhandler, subforest_flag=0))
    plot = Plot(quickview=False)
    ax = plt.subplot(111)
    for i in range(30):
        ax = plot.line(eg0_paths,
                       axis=ax,
                       mesh=mesh,
                       i_sample=i,
                       plot_kwargs={
                           'color': 'k',