Example #1
0
    def __init__(self, N, sps, rolloff, ntaps, bw, noise, foffset, toffset, poffset):
        gr.top_block.__init__(self)

        rrc_taps = gr.firdes.root_raised_cosine(
            sps, sps, 1.0, rolloff, ntaps)

        data = 2.0*scipy.random.randint(0, 2, N) - 1.0
        data = scipy.exp(1j*poffset) * data

        self.src = gr.vector_source_c(data.tolist(), False)
        self.rrc = filter.interp_fir_filter_ccf(sps, rrc_taps)
        self.chn = filter.channel_model(noise, foffset, toffset)
        self.fll = digital.fll_band_edge_cc(sps, rolloff, ntaps, bw)

        self.vsnk_src = gr.vector_sink_c()
        self.vsnk_fll = gr.vector_sink_c()
        self.vsnk_frq = gr.vector_sink_f()
        self.vsnk_phs = gr.vector_sink_f()
        self.vsnk_err = gr.vector_sink_f()

        self.connect(self.src, self.rrc, self.chn, self.fll, self.vsnk_fll)
        self.connect(self.rrc, self.vsnk_src)
        self.connect((self.fll,1), self.vsnk_frq)
        self.connect((self.fll,2), self.vsnk_phs)
        self.connect((self.fll,3), self.vsnk_err)
Example #2
0
    def __init__(self, ifile, ofile, options):
        gr.top_block.__init__(self)

        SNR = 10.0**(options.snr / 10.0)
        time_offset = options.time_offset
        phase_offset = options.phase_offset * (math.pi / 180.0)

        # calculate noise voltage from SNR
        power_in_signal = abs(options.tx_amplitude)**2
        noise_power = power_in_signal / SNR
        noise_voltage = math.sqrt(noise_power)
        print "Noise voltage: ", noise_voltage

        frequency_offset = options.frequency_offset / options.fft_length

        self.src = blocks.file_source(gr.sizeof_gr_complex, ifile)
        #self.throttle = blocks.throttle(gr.sizeof_gr_complex, options.sample_rate)

        self.channel = filter.channel_model(
            noise_voltage,
            frequency_offset,
            time_offset,
            noise_seed=-random.randint(0, 100000))
        self.phase = blocks.multiply_const_cc(
            complex(math.cos(phase_offset), math.sin(phase_offset)))
        self.snk = blocks.file_sink(gr.sizeof_gr_complex, ofile)

        self.connect(self.src, self.channel, self.phase, self.snk)
    def __init__(self):
        gr.top_block.__init__(self)

        Rs = 8000
        f1 = 100
        f2 = 200

        npts = 2048

        self.qapp = QtGui.QApplication(sys.argv)

        src1 = gr.sig_source_c(Rs, gr.GR_SIN_WAVE, f1, 0.5, 0)
        src2 = gr.sig_source_c(Rs, gr.GR_SIN_WAVE, f2, 0.5, 0)
        src  = gr.add_cc()
        channel = filter.channel_model(0.001)
        thr = gr.throttle(gr.sizeof_gr_complex, 100*npts)
        self.snk1 = qtgui.const_sink_c(npts, "Constellation Example", 1)

        self.connect(src1, (src,0))
        self.connect(src2, (src,1))
        self.connect(src,  channel, thr, (self.snk1, 0))

        self.ctrl_win = control_box()
        self.ctrl_win.attach_signal1(src1)
        self.ctrl_win.attach_signal2(src2)

        # Get the reference pointer to the SpectrumDisplayForm QWidget
        pyQt  = self.snk1.pyqwidget()

        # Wrap the pointer as a PyQt SIP object
        # This can now be manipulated as a PyQt4.QtGui.QWidget
        pyWin = sip.wrapinstance(pyQt, QtGui.QWidget)

        self.main_box = dialog_box(pyWin, self.ctrl_win)
        self.main_box.show()
    def __init__(self, ifile, ofile, options):
        gr.top_block.__init__(self)

        SNR = 10.0 ** (options.snr / 10.0)
        time_offset = options.time_offset
        phase_offset = options.phase_offset * (math.pi / 180.0)

        # calculate noise voltage from SNR
        power_in_signal = abs(options.tx_amplitude) ** 2
        noise_power = power_in_signal / SNR
        noise_voltage = math.sqrt(noise_power)
        print "Noise voltage: ", noise_voltage

        frequency_offset = options.frequency_offset / options.fft_length

        self.src = blocks.file_source(gr.sizeof_gr_complex, ifile)
        # self.throttle = blocks.throttle(gr.sizeof_gr_complex, options.sample_rate)

        self.channel = filter.channel_model(
            noise_voltage, frequency_offset, time_offset, noise_seed=-random.randint(0, 100000)
        )
        self.phase = blocks.multiply_const_cc(complex(math.cos(phase_offset), math.sin(phase_offset)))
        self.snk = blocks.file_sink(gr.sizeof_gr_complex, ofile)

        self.connect(self.src, self.channel, self.phase, self.snk)
Example #5
0
    def __init__(self):
        gr.top_block.__init__(self)

        self._nsamples = 1000000
        self._audio_rate = 8000

        # Set up N channels with their own baseband and IF frequencies
        self._N = 5
        chspacing = 16000
        freq = [10, 20, 30, 40, 50]
        f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing]

        self._if_rate = 4*self._N*self._audio_rate

        # Create a signal source and frequency modulate it
        self.sum = gr.add_cc ()
        for n in xrange(self._N):
            sig = gr.sig_source_f(self._audio_rate, gr.GR_SIN_WAVE, freq[n], 0.5)
            fm = fmtx(f_lo[n], self._audio_rate, self._if_rate)
            self.connect(sig, fm)
            self.connect(fm, (self.sum, n))

        self.head = gr.head(gr.sizeof_gr_complex, self._nsamples)
        self.snk_tx = gr.vector_sink_c()
        self.channel = filter.channel_model(0.1)

        self.connect(self.sum, self.head, self.channel, self.snk_tx)


        # Design the channlizer
        self._M = 10
        bw = chspacing/2.0
        t_bw = chspacing/10.0
        self._chan_rate = self._if_rate / self._M
        self._taps = filter.firdes.low_pass_2(1, self._if_rate, bw, t_bw,
                                              attenuation_dB=100,
                                              window=filter.firdes.WIN_BLACKMAN_hARRIS)
        tpc = math.ceil(float(len(self._taps)) /  float(self._M))

        print "Number of taps:     ", len(self._taps)
        print "Number of channels: ", self._M
        print "Taps per channel:   ", tpc

        self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps)

        self.connect(self.channel, self.pfb)

        # Create a file sink for each of M output channels of the filter and connect it
        self.fmdet = list()
        self.squelch = list()
        self.snks = list()
        for i in xrange(self._M):
            self.fmdet.append(blks2.nbfm_rx(self._audio_rate, self._chan_rate))
            self.squelch.append(blks2.standard_squelch(self._audio_rate*10))
            self.snks.append(gr.vector_sink_f())
            self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i])
Example #6
0
    def __init__(self):
        gr.top_block.__init__(self)

        Rs = 8000
        f1 = 100
        f2 = 200

        npts = 2048

        self.qapp = QtGui.QApplication(sys.argv)

        src1 = gr.sig_source_c(Rs, gr.GR_SIN_WAVE, f1, 0.1, 0)
        src2 = gr.sig_source_c(Rs, gr.GR_SIN_WAVE, f2, 0.1, 0)
        src  = gr.add_cc()
        channel = filter.channel_model(0.01)
        thr = gr.throttle(gr.sizeof_gr_complex, 100*npts)
        self.snk1 = qtgui.time_sink_c(npts, Rs,
                                      "Complex Time Example", 1)

        self.connect(src1, (src,0))
        self.connect(src2, (src,1))
        self.connect(src,  channel, thr, (self.snk1, 0))
        #self.connect(src1, (self.snk1, 1))
        #self.connect(src2, (self.snk1, 2))

        self.ctrl_win = control_box()
        self.ctrl_win.attach_signal1(src1)
        self.ctrl_win.attach_signal2(src2)

        # Get the reference pointer to the SpectrumDisplayForm QWidget
        pyQt  = self.snk1.pyqwidget()

        # Wrap the pointer as a PyQt SIP object
        # This can now be manipulated as a PyQt4.QtGui.QWidget
        pyWin = sip.wrapinstance(pyQt, QtGui.QWidget)

        # Example of using signal/slot to set the title of a curve
        pyWin.connect(pyWin, QtCore.SIGNAL("setTitle(int, QString)"),
                      pyWin, QtCore.SLOT("setTitle(int, QString)"))
        pyWin.emit(QtCore.SIGNAL("setTitle(int, QString)"), 0, "Re{sum}")
        self.snk1.set_title(1, "Im{Sum}")
        #self.snk1.set_title(2, "Re{src1}")
        #self.snk1.set_title(3, "Im{src1}")
        #self.snk1.set_title(4, "Re{src2}")
        #self.snk1.set_title(5, "Im{src2}")

        # Can also set the color of a curve
        #self.snk1.set_color(5, "blue")

        self.snk1.set_update_time(0.5)

        #pyWin.show()
        self.main_box = dialog_box(pyWin, self.ctrl_win)
        self.main_box.show()
    def __init__(self, N, sps, rolloff, ntaps, bw, noise,
                 foffset, toffset, poffset, mode=0):
        gr.top_block.__init__(self)

        rrc_taps = gr.firdes.root_raised_cosine(
            sps, sps, 1.0, rolloff, ntaps)

        gain = 2*scipy.pi/100.0
        nfilts = 32
        rrc_taps_rx = gr.firdes.root_raised_cosine(
            nfilts, sps*nfilts, 1.0, rolloff, ntaps*nfilts)
            
        data = 2.0*scipy.random.randint(0, 2, N) - 1.0
        data = scipy.exp(1j*poffset) * data

        self.src = gr.vector_source_c(data.tolist(), False)
        self.rrc = filter.interp_fir_filter_ccf(sps, rrc_taps)
        self.chn = filter.channel_model(noise, foffset, toffset)
        self.off = filter.fractional_interpolator_cc(0.20, 1.0)

        if mode == 0:
            self.clk = digital.pfb_clock_sync_ccf(sps, gain, rrc_taps_rx,
                                                  nfilts, nfilts//2, 3.5)
            self.taps = self.clk.taps()
            self.dtaps = self.clk.diff_taps()

            self.vsnk_err = gr.vector_sink_f()
            self.vsnk_rat = gr.vector_sink_f()
            self.vsnk_phs = gr.vector_sink_f()

            self.connect((self.clk,1), self.vsnk_err)
            self.connect((self.clk,2), self.vsnk_rat)
            self.connect((self.clk,3), self.vsnk_phs)
            
        else: # mode == 1
            mu = 0.5
            gain_mu = 0.1
            gain_omega = 0.25*gain_mu*gain_mu
            omega_rel_lim = 0.02
            self.clk = digital.clock_recovery_mm_cc(sps, gain_omega,
                                                    mu, gain_mu,
                                                    omega_rel_lim)

            self.vsnk_err = gr.vector_sink_f()

            self.connect((self.clk,1), self.vsnk_err)

        self.vsnk_src = gr.vector_sink_c()
        self.vsnk_clk = gr.vector_sink_c()

        self.connect(self.src, self.rrc, self.chn, self.off, self.clk, self.vsnk_clk)
        self.connect(self.off, self.vsnk_src)
def main():
    N = 10000
    fs = 2000.0
    Ts = 1.0/fs
    t = scipy.arange(0, N*Ts, Ts)

    # When playing with the number of channels, be careful about the filter
    # specs and the channel map of the synthesizer set below.
    nchans = 10

    # Build the filter(s)
    bw = 1000
    tb = 400
    proto_taps = filter.firdes.low_pass_2(1, nchans*fs,
                                          bw, tb, 80,
                                          filter.firdes.WIN_BLACKMAN_hARRIS)
    print "Filter length: ", len(proto_taps)


    # Create a modulated signal
    npwr = 0.01
    data = scipy.random.randint(0, 256, N)
    rrc_taps = filter.firdes.root_raised_cosine(1, 2, 1, 0.35, 41)

    src = gr.vector_source_b(data.astype(scipy.uint8).tolist(), False)
    mod = digital.bpsk_mod(samples_per_symbol=2)
    chan = filter.channel_model(npwr)
    rrc = filter.fft_filter_ccc(1, rrc_taps)

    # Split it up into pieces
    channelizer = filter.pfb.channelizer_ccf(nchans, proto_taps, 2)

    # Put the pieces back together again
    syn_taps = [nchans*t for t in proto_taps]
    synthesizer = filter.pfb_synthesizer_ccf(nchans, syn_taps, True)
    src_snk = gr.vector_sink_c()
    snk = gr.vector_sink_c()

    # Remap the location of the channels
    # Can be done in synth or channelizer (watch out for rotattions in
    # the channelizer)
    synthesizer.set_channel_map([ 0,  1,  2,  3,  4,
                                 15, 16, 17, 18, 19])

    tb = gr.top_block()
    tb.connect(src, mod, chan, rrc, channelizer)
    tb.connect(rrc, src_snk)

    vsnk = []
    for i in xrange(nchans):
        tb.connect((channelizer,i), (synthesizer, i))

        vsnk.append(gr.vector_sink_c())
        tb.connect((channelizer,i), vsnk[i])

    tb.connect(synthesizer, snk)
    tb.run()

    sin  = scipy.array(src_snk.data()[1000:])
    sout = scipy.array(snk.data()[1000:])


    # Plot original signal
    fs_in = nchans*fs
    f1 = pylab.figure(1, figsize=(16,12), facecolor='w')
    s11 = f1.add_subplot(2,2,1)
    s11.psd(sin, NFFT=fftlen, Fs=fs_in)
    s11.set_title("PSD of Original Signal")
    s11.set_ylim([-200, -20])

    s12 = f1.add_subplot(2,2,2)
    s12.plot(sin.real[1000:1500], "o-b")
    s12.plot(sin.imag[1000:1500], "o-r")
    s12.set_title("Original Signal in Time")

    start = 1
    skip  = 4
    s13 = f1.add_subplot(2,2,3)
    s13.plot(sin.real[start::skip], sin.imag[start::skip], "o")
    s13.set_title("Constellation")
    s13.set_xlim([-2, 2])
    s13.set_ylim([-2, 2])

    # Plot channels
    nrows = int(scipy.sqrt(nchans))
    ncols = int(scipy.ceil(float(nchans)/float(nrows)))

    f2 = pylab.figure(2, figsize=(16,12), facecolor='w')
    for n in xrange(nchans):
        s = f2.add_subplot(nrows, ncols, n+1)
        s.psd(vsnk[n].data(), NFFT=fftlen, Fs=fs_in)
        s.set_title("Channel {0}".format(n))
        s.set_ylim([-200, -20])

    # Plot reconstructed signal
    fs_out = 2*nchans*fs
    f3 = pylab.figure(3, figsize=(16,12), facecolor='w')
    s31 = f3.add_subplot(2,2,1)
    s31.psd(sout, NFFT=fftlen, Fs=fs_out)
    s31.set_title("PSD of Reconstructed Signal")
    s31.set_ylim([-200, -20])

    s32 = f3.add_subplot(2,2,2)
    s32.plot(sout.real[1000:1500], "o-b")
    s32.plot(sout.imag[1000:1500], "o-r")
    s32.set_title("Reconstructed Signal in Time")

    start = 2
    skip  = 4
    s33 = f3.add_subplot(2,2,3)
    s33.plot(sout.real[start::skip], sout.imag[start::skip], "o")
    s33.set_title("Constellation")
    s33.set_xlim([-2, 2])
    s33.set_ylim([-2, 2])

    pylab.show()
Example #9
0
def main():
    N = 10000
    fs = 2000.0
    Ts = 1.0 / fs
    t = scipy.arange(0, N * Ts, Ts)

    # When playing with the number of channels, be careful about the filter
    # specs and the channel map of the synthesizer set below.
    nchans = 10

    # Build the filter(s)
    bw = 1000
    tb = 400
    proto_taps = filter.firdes.low_pass_2(1, nchans * fs, bw, tb, 80,
                                          filter.firdes.WIN_BLACKMAN_hARRIS)
    print "Filter length: ", len(proto_taps)

    # Create a modulated signal
    npwr = 0.01
    data = scipy.random.randint(0, 256, N)
    rrc_taps = filter.firdes.root_raised_cosine(1, 2, 1, 0.35, 41)

    src = blocks.vector_source_b(data.astype(scipy.uint8).tolist(), False)
    mod = digital.bpsk_mod(samples_per_symbol=2)
    chan = filter.channel_model(npwr)
    rrc = filter.fft_filter_ccc(1, rrc_taps)

    # Split it up into pieces
    channelizer = filter.pfb.channelizer_ccf(nchans, proto_taps, 2)

    # Put the pieces back together again
    syn_taps = [nchans * t for t in proto_taps]
    synthesizer = filter.pfb_synthesizer_ccf(nchans, syn_taps, True)
    src_snk = blocks.vector_sink_c()
    snk = blocks.vector_sink_c()

    # Remap the location of the channels
    # Can be done in synth or channelizer (watch out for rotattions in
    # the channelizer)
    synthesizer.set_channel_map([0, 1, 2, 3, 4, 15, 16, 17, 18, 19])

    tb = gr.top_block()
    tb.connect(src, mod, chan, rrc, channelizer)
    tb.connect(rrc, src_snk)

    vsnk = []
    for i in xrange(nchans):
        tb.connect((channelizer, i), (synthesizer, i))

        vsnk.append(blocks.vector_sink_c())
        tb.connect((channelizer, i), vsnk[i])

    tb.connect(synthesizer, snk)
    tb.run()

    sin = scipy.array(src_snk.data()[1000:])
    sout = scipy.array(snk.data()[1000:])

    # Plot original signal
    fs_in = nchans * fs
    f1 = pylab.figure(1, figsize=(16, 12), facecolor='w')
    s11 = f1.add_subplot(2, 2, 1)
    s11.psd(sin, NFFT=fftlen, Fs=fs_in)
    s11.set_title("PSD of Original Signal")
    s11.set_ylim([-200, -20])

    s12 = f1.add_subplot(2, 2, 2)
    s12.plot(sin.real[1000:1500], "o-b")
    s12.plot(sin.imag[1000:1500], "o-r")
    s12.set_title("Original Signal in Time")

    start = 1
    skip = 4
    s13 = f1.add_subplot(2, 2, 3)
    s13.plot(sin.real[start::skip], sin.imag[start::skip], "o")
    s13.set_title("Constellation")
    s13.set_xlim([-2, 2])
    s13.set_ylim([-2, 2])

    # Plot channels
    nrows = int(scipy.sqrt(nchans))
    ncols = int(scipy.ceil(float(nchans) / float(nrows)))

    f2 = pylab.figure(2, figsize=(16, 12), facecolor='w')
    for n in xrange(nchans):
        s = f2.add_subplot(nrows, ncols, n + 1)
        s.psd(vsnk[n].data(), NFFT=fftlen, Fs=fs_in)
        s.set_title("Channel {0}".format(n))
        s.set_ylim([-200, -20])

    # Plot reconstructed signal
    fs_out = 2 * nchans * fs
    f3 = pylab.figure(3, figsize=(16, 12), facecolor='w')
    s31 = f3.add_subplot(2, 2, 1)
    s31.psd(sout, NFFT=fftlen, Fs=fs_out)
    s31.set_title("PSD of Reconstructed Signal")
    s31.set_ylim([-200, -20])

    s32 = f3.add_subplot(2, 2, 2)
    s32.plot(sout.real[1000:1500], "o-b")
    s32.plot(sout.imag[1000:1500], "o-r")
    s32.set_title("Reconstructed Signal in Time")

    start = 2
    skip = 4
    s33 = f3.add_subplot(2, 2, 3)
    s33.plot(sout.real[start::skip], sout.imag[start::skip], "o")
    s33.set_title("Constellation")
    s33.set_xlim([-2, 2])
    s33.set_ylim([-2, 2])

    pylab.show()
def main():
    gr_estimators = {"simple": digital.SNR_EST_SIMPLE,
                     "skew": digital.SNR_EST_SKEW,
                     "m2m4": digital.SNR_EST_M2M4,
                     "svr": digital.SNR_EST_SVR}
    py_estimators = {"simple": snr_est_simple,
                     "skew": snr_est_skew,
                     "m2m4": snr_est_m2m4,
                     "svr": snr_est_svr}
    
    
    parser = OptionParser(option_class=eng_option, conflict_handler="resolve")
    parser.add_option("-N", "--nsamples", type="int", default=10000,
                      help="Set the number of samples to process [default=%default]")
    parser.add_option("", "--snr-min", type="float", default=-5,
                      help="Minimum SNR [default=%default]")
    parser.add_option("", "--snr-max", type="float", default=20,
                      help="Maximum SNR [default=%default]")
    parser.add_option("", "--snr-step", type="float", default=0.5,
                      help="SNR step amount [default=%default]")
    parser.add_option("-t", "--type", type="choice",
                      choices=gr_estimators.keys(), default="simple",
                      help="Estimator type {0} [default=%default]".format(
                            gr_estimators.keys()))
    (options, args) = parser.parse_args ()

    N = options.nsamples
    xx = scipy.random.randn(N)
    xy = scipy.random.randn(N)
    bits = 2*scipy.complex64(scipy.random.randint(0, 2, N)) - 1

    snr_known = list()
    snr_python = list()
    snr_gr = list()
    
    # when to issue an SNR tag; can be ignored in this example.
    ntag = 10000

    n_cpx = xx + 1j*xy

    py_est = py_estimators[options.type]
    gr_est = gr_estimators[options.type]

    SNR_min = options.snr_min
    SNR_max = options.snr_max
    SNR_step = options.snr_step
    SNR_dB = scipy.arange(SNR_min, SNR_max+SNR_step, SNR_step)
    for snr in SNR_dB:
        SNR = 10.0**(snr/10.0)
        scale = scipy.sqrt(SNR)
        yy = bits + n_cpx/scale
        print "SNR: ", snr

        Sknown = scipy.mean(yy**2)
        Nknown = scipy.var(n_cpx/scale)/2
        snr0 = Sknown/Nknown
        snr0dB = 10.0*scipy.log10(snr0)
        snr_known.append(snr0dB)

        snrdB, snr = py_est(yy)        
        snr_python.append(snrdB)

        gr_src = gr.vector_source_c(bits.tolist(), False)
        gr_snr = digital.mpsk_snr_est_cc(gr_est, ntag, 0.001)
        gr_chn = filter.channel_model(1.0/scale)
        gr_snk = gr.null_sink(gr.sizeof_gr_complex)
        tb = gr.top_block()
        tb.connect(gr_src, gr_chn, gr_snr, gr_snk)
        tb.run()

        snr_gr.append(gr_snr.snr())

    f1 = pylab.figure(1)
    s1 = f1.add_subplot(1,1,1)
    s1.plot(SNR_dB, snr_known, "k-o", linewidth=2, label="Known")
    s1.plot(SNR_dB, snr_python, "b-o", linewidth=2, label="Python")
    s1.plot(SNR_dB, snr_gr, "g-o", linewidth=2, label="GNU Radio")
    s1.grid(True)
    s1.set_title('SNR Estimators')
    s1.set_xlabel('SNR (dB)')
    s1.set_ylabel('Estimated SNR')
    s1.legend()

    pylab.show()