Example #1
0
def calculate_score_for_leaderboard():
    """
    Evaluate the performance of the network. This is the function to be used for
    the final ranking on the course-wide leader-board, only with a different set
    of seeds. Better not change it.
    """
    # action variables
    a = np.array([0.0, 0.0, 0.0])

    # init environement
    env = CarRacing()
    env.render()
    env.reset()

    seeds = [
        22597174, 68545857, 75568192, 91140053, 86018367, 49636746, 66759182,
        91294619, 84274995, 31531469
    ]

    total_reward = 0

    for episode in range(10):
        env.seed(seeds[episode])
        observation = env.reset()

        # init modules of the pipeline
        LD_module = LaneDetection(gradient_threshold=25, spline_smoothness=20)
        LatC_module = LateralController(gain_constant=1.8,
                                        damping_constant=0.05)
        LongC_module = LongitudinalController(KD=0.001)

        reward_per_episode = 0
        for t in range(600):
            # perform step
            s, r, done, speed, info = env.step(a)

            # lane detection
            lane1, lane2 = LD_module.lane_detection(s)

            # waypoint and target_speed prediction
            waypoints = waypoint_prediction(lane1, lane2)
            target_speed = target_speed_prediction(waypoints,
                                                   max_speed=60,
                                                   exp_constant=6)

            # control
            a[0] = LatC_module.stanley(waypoints, speed)
            a[1], a[2] = LongC_module.control(speed, target_speed)

            # reward
            reward_per_episode += r

            env.render()

        print('episode %d \t reward %f' % (episode, reward_per_episode))
        total_reward += np.clip(reward_per_episode, 0, np.infty)

    print('---------------------------')
    print(' total score: %f' % (total_reward / 10))
    print('---------------------------')
Example #2
0
# define variables
total_reward = 0.0
steps = 0
restart = False

# init modules of the pipeline
LD_module = LaneDetection()
LatC_module = LateralController()
LongC_module = LongitudinalController()

# init extra plot
fig = plt.figure()
plt.ion()
plt.show()

env.seed(91294619)
while True:
    # perform step
    s, r, done, speed, info = env.step(a)

    # lane detection
    lane1, lane2 = LD_module.lane_detection(s)

    # waypoint and target_speed prediction
    waypoints = waypoint_prediction(lane1, lane2)
    target_speed = target_speed_prediction(waypoints,
                                           max_speed=60,
                                           exp_constant=4.5)

    # control
    a[0] = LatC_module.stanley(waypoints, speed)
Example #3
0
    if k == key.DOWN:  a[2] = +0.8  # set 1.0 for wheels to block to zero rotation


def key_release(k, mod):
    if k == key.LEFT and a[0] == -1.0: a[0] = 0
    if k == key.RIGHT and a[0] == +1.0: a[0] = 0
    if k == key.UP:    a[1] = 0
    if k == key.DOWN:  a[2] = 0

env = CarRacing()
env.render()
env.viewer.window.on_key_press = key_press
env.viewer.window.on_key_release = key_release

while True:
    env.seed(seed=5)
    env.reset()
    total_reward = 0.0
    steps = 0
    restart = False
    env.render()
    while True:
        s, r, done, info = env.step(a)
        total_reward += r
        if steps % 200 == 0 or done:
            # print("\naction " + str(["{:+0.2f}".format(x) for x in a]))
            # print("step {} total_reward {:+0.2f}".format(steps, total_reward))
            pass
        steps += 1
        env.render()
        obs = state_to_1_batch_tensor(s)
env.reset()

# define variables
total_reward = 0.0
steps = 0
restart = False

# init modules of the pipeline
LD_module = LaneDetection()
LatC_module = LateralController()

# init extra plot
fig = plt.figure()
plt.ion()
plt.show()
env.seed(68545857)

while True:
    # perform step
    s, r, done, speed, info = env.step(a)

    # lane detection
    lane1, lane2 = LD_module.lane_detection(s)

    # waypoint and target_speed prediction
    waypoints = waypoint_prediction(lane1, lane2)
    target_speed = target_speed_prediction(waypoints)

    # control with constant gas and no braking
    a[0] = LatC_module.stanley(waypoints, speed)