def Chen_Bennett(m, x, D, rhol, rhog, mul, mug, kl, Cpl, Hvap, sigma, dPsat, Te): r'''Calculates heat transfer coefficient for film boiling of saturated fluid in any orientation of flow. Correlation is developed in [1]_ and [2]_, and reviewed in [3]_. This model is one of the most often used, and replaces the `Chen_Edelstein` correlation. It uses the Dittus-Boelter correlation for turbulent convection and the Forster-Zuber correlation for pool boiling, and combines them with two factors `F` and `S`. .. math:: h_{tp} = S\cdot h_{nb} + F \cdot h_{sp,l} .. math:: h_{sp,l} = 0.023 Re_l^{0.8} Pr_l^{0.4} k_l/D .. math:: Re_l = \frac{DG(1-x)}{\mu_l} .. math:: h_{nb} = 0.00122\left( \frac{\lambda_l^{0.79} c_{p,l}^{0.45} \rho_l^{0.49}}{\sigma^{0.5} \mu^{0.29} H_{vap}^{0.24} \rho_g^{0.24}} \right)\Delta T_{sat}^{0.24} \Delta p_{sat}^{0.75} .. math:: F = \left(\frac{Pr_1+1}{2}\right)^{0.444}\cdot (1+X_{tt}^{-0.5})^{1.78} .. math:: S = \frac{1-\exp(-F\cdot h_{conv} \cdot X_0/k_l)} {F\cdot h_{conv}\cdot X_0/k_l} .. math:: X_{tt} = \left( \frac{1-x}{x}\right)^{0.9} \left(\frac{\rho_g}{\rho_l} \right)^{0.5}\left( \frac{\mu_l}{\mu_g}\right)^{0.1} .. math:: X_0 = 0.041 \left(\frac{\sigma}{g \cdot (\rho_l-\rho_v)}\right)^{0.5} Parameters ---------- m : float Mass flow rate [kg/s] x : float Quality at the specific tube interval [] D : float Diameter of the tube [m] rhol : float Density of the liquid [kg/m^3] rhog : float Density of the gas [kg/m^3] mul : float Viscosity of liquid [Pa*s] mug : float Viscosity of gas [Pa*s] kl : float Thermal conductivity of liquid [W/m/K] Cpl : float Heat capacity of liquid [J/kg/K] Hvap : float Heat of vaporization of liquid [J/kg] sigma : float Surface tension of liquid [N/m] dPsat : float Difference in Saturation pressure of fluid at Te and T, [Pa] Te : float Excess temperature of wall, [K] Returns ------- h : float Heat transfer coefficient [W/m^2/K] Notes ----- [1]_ and [2]_ have been reviewed, but the model is only put together in the review of [3]_. Many other forms of this equation exist with different functions for `F` and `S`. Examples -------- >>> Chen_Bennett(m=0.106, x=0.2, D=0.0212, rhol=567, rhog=18.09, ... mul=156E-6, mug=7.11E-6, kl=0.086, Cpl=2730, Hvap=2E5, sigma=0.02, ... dPsat=1E5, Te=3) 4938.275351219369 See Also -------- Chen_Edelstein turbulent_Dittus_Boelter Forster_Zuber References ---------- .. [1] Bennett, Douglas L., and John C. Chen. "Forced Convective Boiling in Vertical Tubes for Saturated Pure Components and Binary Mixtures." AIChE Journal 26, no. 3 (May 1, 1980): 454-61. doi:10.1002/aic.690260317. .. [2] Bennett, Douglas L., M.W. Davies and B.L. Hertzler, The Suppression of Saturated Nucleate Boiling by Forced Convective Flow, American Institute of Chemical Engineers Symposium Series, vol. 76, no. 199. 91-103, 1980. .. [3] Bertsch, Stefan S., Eckhard A. Groll, and Suresh V. Garimella. "Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels." Nanoscale and Microscale Thermophysical Engineering 12, no. 3 (September 4, 2008): 187-227. doi:10.1080/15567260802317357. ''' G = m/(pi/4*D**2) Rel = D*G*(1-x)/mul Prl = Prandtl(Cp=Cpl, mu=mul, k=kl) hl = turbulent_Dittus_Boelter(Re=Rel, Pr=Prl)*kl/D Xtt = Lockhart_Martinelli_Xtt(x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug) F = ((Prl+1)/2.)**0.444*(1 + Xtt**-0.5)**1.78 X0 = 0.041*(sigma/(g*(rhol-rhog)))**0.5 S = (1 - exp(-F*hl*X0/kl))/(F*hl*X0/kl) hnb = Forster_Zuber(Te=Te, dPsat=dPsat, Cpl=Cpl, kl=kl, mul=mul, sigma=sigma, Hvap=Hvap, rhol=rhol, rhog=rhog) return hnb*S + hl*F
def Chen_Edelstein(m, x, D, rhol, rhog, mul, mug, kl, Cpl, Hvap, sigma, dPsat, Te): r'''Calculates heat transfer coefficient for film boiling of saturated fluid in any orientation of flow. Correlation is developed in [1]_ and [2]_, and reviewed in [3]_. This model is one of the most often used. It uses the Dittus-Boelter correlation for turbulent convection and the Forster-Zuber correlation for pool boiling, and combines them with two factors `F` and `S`. .. math:: h_{tp} = S\cdot h_{nb} + F \cdot h_{sp,l} .. math:: h_{sp,l} = 0.023 Re_l^{0.8} Pr_l^{0.4} k_l/D .. math:: Re_l = \frac{DG(1-x)}{\mu_l} .. math:: h_{nb} = 0.00122\left( \frac{\lambda_l^{0.79} c_{p,l}^{0.45} \rho_l^{0.49}}{\sigma^{0.5} \mu^{0.29} H_{vap}^{0.24} \rho_g^{0.24}} \right)\Delta T_{sat}^{0.24} \Delta p_{sat}^{0.75} .. math:: F = (1 + X_{tt}^{-0.5})^{1.78} .. math:: X_{tt} = \left( \frac{1-x}{x}\right)^{0.9} \left(\frac{\rho_g}{\rho_l} \right)^{0.5}\left( \frac{\mu_l}{\mu_g}\right)^{0.1} .. math:: S = 0.9622 - 0.5822\left(\tan^{-1}\left(\frac{Re_L\cdot F^{1.25}} {6.18\cdot 10^4}\right)\right) Parameters ---------- m : float Mass flow rate [kg/s] x : float Quality at the specific tube interval [] D : float Diameter of the tube [m] rhol : float Density of the liquid [kg/m^3] rhog : float Density of the gas [kg/m^3] mul : float Viscosity of liquid [Pa*s] mug : float Viscosity of gas [Pa*s] kl : float Thermal conductivity of liquid [W/m/K] Cpl : float Heat capacity of liquid [J/kg/K] Hvap : float Heat of vaporization of liquid [J/kg] sigma : float Surface tension of liquid [N/m] dPsat : float Difference in Saturation pressure of fluid at Te and T, [Pa] Te : float Excess temperature of wall, [K] Returns ------- h : float Heat transfer coefficient [W/m^2/K] Notes ----- [1]_ and [2]_ have been reviewed, but the model is only put together in the review of [3]_. Many other forms of this equation exist with different functions for `F` and `S`. Examples -------- >>> Chen_Edelstein(m=0.106, x=0.2, D=0.0212, rhol=567, rhog=18.09, ... mul=156E-6, mug=7.11E-6, kl=0.086, Cpl=2730, Hvap=2E5, sigma=0.02, ... dPsat=1E5, Te=3) 3289.058731974052 See Also -------- turbulent_Dittus_Boelter Forster_Zuber References ---------- .. [1] Chen, J. C. "Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow." Industrial & Engineering Chemistry Process Design and Development 5, no. 3 (July 1, 1966): 322-29. doi:10.1021/i260019a023. .. [2] Edelstein, Sergio, A. J. PĂ©rez, and J. C. Chen. "Analytic Representation of Convective Boiling Functions." AIChE Journal 30, no. 5 (September 1, 1984): 840-41. doi:10.1002/aic.690300528. .. [3] Bertsch, Stefan S., Eckhard A. Groll, and Suresh V. Garimella. "Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels." Nanoscale and Microscale Thermophysical Engineering 12, no. 3 (September 4, 2008): 187-227. doi:10.1080/15567260802317357. ''' G = m/(pi/4*D**2) Rel = D*G*(1-x)/mul Prl = Prandtl(Cp=Cpl, mu=mul, k=kl) hl = turbulent_Dittus_Boelter(Re=Rel, Pr=Prl)*kl/D Xtt = Lockhart_Martinelli_Xtt(x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug) F = (1 + Xtt**-0.5)**1.78 Re = Rel*F**1.25 S = 0.9622 - 0.5822*atan(Re/6.18E4) hnb = Forster_Zuber(Te=Te, dPsat=dPsat, Cpl=Cpl, kl=kl, mul=mul, sigma=sigma, Hvap=Hvap, rhol=rhol, rhog=rhog) return hnb*S + hl*F