コード例 #1
0
ファイル: boiling_flow.py プロジェクト: lonelyghost17/ht
def Chen_Bennett(m, x, D, rhol, rhog, mul, mug, kl, Cpl, Hvap, sigma,
                   dPsat, Te):
    r'''Calculates heat transfer coefficient for film boiling of saturated
    fluid in any orientation of flow. Correlation
    is developed in [1]_ and [2]_, and reviewed in [3]_. This model is one of
    the most often used, and replaces the `Chen_Edelstein` correlation. It uses
    the Dittus-Boelter correlation for turbulent convection and the
    Forster-Zuber correlation for pool boiling, and combines them with two
    factors `F` and `S`.

    .. math::
        h_{tp} = S\cdot h_{nb} + F \cdot h_{sp,l}

    .. math::
       h_{sp,l} = 0.023 Re_l^{0.8} Pr_l^{0.4} k_l/D

    .. math::
       Re_l = \frac{DG(1-x)}{\mu_l}

    .. math::
       h_{nb} = 0.00122\left( \frac{\lambda_l^{0.79} c_{p,l}^{0.45}
        \rho_l^{0.49}}{\sigma^{0.5} \mu^{0.29} H_{vap}^{0.24} \rho_g^{0.24}}
        \right)\Delta T_{sat}^{0.24} \Delta p_{sat}^{0.75}

    .. math::
       F = \left(\frac{Pr_1+1}{2}\right)^{0.444}\cdot (1+X_{tt}^{-0.5})^{1.78}

    .. math::
       S = \frac{1-\exp(-F\cdot h_{conv} \cdot X_0/k_l)}
        {F\cdot h_{conv}\cdot X_0/k_l}

    .. math::
       X_{tt} = \left( \frac{1-x}{x}\right)^{0.9} \left(\frac{\rho_g}{\rho_l}
        \right)^{0.5}\left( \frac{\mu_l}{\mu_g}\right)^{0.1}

    .. math::
       X_0 = 0.041 \left(\frac{\sigma}{g \cdot (\rho_l-\rho_v)}\right)^{0.5}

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific tube interval []
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    rhog : float
        Density of the gas [kg/m^3]
    mul : float
        Viscosity of liquid [Pa*s]
    mug : float
        Viscosity of gas [Pa*s]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    Cpl : float
        Heat capacity of liquid [J/kg/K]
    Hvap : float
        Heat of vaporization of liquid [J/kg]
    sigma : float
        Surface tension of liquid [N/m]
    dPsat : float
        Difference in Saturation pressure of fluid at Te and T, [Pa]
    Te : float
        Excess temperature of wall, [K]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    [1]_ and [2]_ have been reviewed, but the model is only put together in
    the review of [3]_. Many other forms of this equation exist with different
    functions for `F` and `S`.

    Examples
    --------
    >>> Chen_Bennett(m=0.106, x=0.2, D=0.0212, rhol=567, rhog=18.09,
    ... mul=156E-6, mug=7.11E-6, kl=0.086, Cpl=2730, Hvap=2E5, sigma=0.02,
    ... dPsat=1E5, Te=3)
    4938.275351219369

    See Also
    --------
    Chen_Edelstein
    turbulent_Dittus_Boelter
    Forster_Zuber

    References
    ----------
    .. [1] Bennett, Douglas L., and John C. Chen. "Forced Convective Boiling in
       Vertical Tubes for Saturated Pure Components and Binary Mixtures."
       AIChE Journal 26, no. 3 (May 1, 1980): 454-61. doi:10.1002/aic.690260317.
    .. [2] Bennett, Douglas L., M.W. Davies and B.L. Hertzler, The Suppression
       of Saturated Nucleate Boiling by Forced Convective Flow, American
       Institute of Chemical Engineers Symposium Series, vol. 76, no. 199.
       91-103, 1980.
    .. [3] Bertsch, Stefan S., Eckhard A. Groll, and Suresh V. Garimella.
       "Review and Comparative Analysis of Studies on Saturated Flow Boiling in
       Small Channels." Nanoscale and Microscale Thermophysical Engineering 12,
       no. 3 (September 4, 2008): 187-227. doi:10.1080/15567260802317357.
    '''
    G = m/(pi/4*D**2)
    Rel = D*G*(1-x)/mul
    Prl = Prandtl(Cp=Cpl, mu=mul, k=kl)
    hl = turbulent_Dittus_Boelter(Re=Rel, Pr=Prl)*kl/D
    Xtt = Lockhart_Martinelli_Xtt(x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug)
    F = ((Prl+1)/2.)**0.444*(1 + Xtt**-0.5)**1.78
    X0 = 0.041*(sigma/(g*(rhol-rhog)))**0.5
    S = (1 - exp(-F*hl*X0/kl))/(F*hl*X0/kl)

    hnb = Forster_Zuber(Te=Te, dPsat=dPsat, Cpl=Cpl, kl=kl, mul=mul, sigma=sigma,
                       Hvap=Hvap, rhol=rhol, rhog=rhog)
    return hnb*S + hl*F
コード例 #2
0
ファイル: boiling_flow.py プロジェクト: lonelyghost17/ht
def Chen_Edelstein(m, x, D, rhol, rhog, mul, mug, kl, Cpl, Hvap, sigma,
                   dPsat, Te):
    r'''Calculates heat transfer coefficient for film boiling of saturated
    fluid in any orientation of flow. Correlation
    is developed in [1]_ and [2]_, and reviewed in [3]_. This model is one of
    the most often used. It uses the Dittus-Boelter correlation for turbulent
    convection and the Forster-Zuber correlation for pool boiling, and
    combines them with two factors `F` and `S`.


    .. math::
        h_{tp} = S\cdot h_{nb} + F \cdot h_{sp,l}

    .. math::
        h_{sp,l} = 0.023 Re_l^{0.8} Pr_l^{0.4} k_l/D

    .. math::
        Re_l = \frac{DG(1-x)}{\mu_l}

    .. math::
        h_{nb} = 0.00122\left( \frac{\lambda_l^{0.79} c_{p,l}^{0.45}
        \rho_l^{0.49}}{\sigma^{0.5} \mu^{0.29} H_{vap}^{0.24} \rho_g^{0.24}}
        \right)\Delta T_{sat}^{0.24} \Delta p_{sat}^{0.75}

    .. math::
        F = (1 + X_{tt}^{-0.5})^{1.78}

    .. math::
        X_{tt} = \left( \frac{1-x}{x}\right)^{0.9} \left(\frac{\rho_g}{\rho_l}
        \right)^{0.5}\left( \frac{\mu_l}{\mu_g}\right)^{0.1}

    .. math::
        S = 0.9622 - 0.5822\left(\tan^{-1}\left(\frac{Re_L\cdot F^{1.25}}
        {6.18\cdot 10^4}\right)\right)

    Parameters
    ----------
    m : float
        Mass flow rate [kg/s]
    x : float
        Quality at the specific tube interval []
    D : float
        Diameter of the tube [m]
    rhol : float
        Density of the liquid [kg/m^3]
    rhog : float
        Density of the gas [kg/m^3]
    mul : float
        Viscosity of liquid [Pa*s]
    mug : float
        Viscosity of gas [Pa*s]
    kl : float
        Thermal conductivity of liquid [W/m/K]
    Cpl : float
        Heat capacity of liquid [J/kg/K]
    Hvap : float
        Heat of vaporization of liquid [J/kg]
    sigma : float
        Surface tension of liquid [N/m]
    dPsat : float
        Difference in Saturation pressure of fluid at Te and T, [Pa]
    Te : float
        Excess temperature of wall, [K]

    Returns
    -------
    h : float
        Heat transfer coefficient [W/m^2/K]

    Notes
    -----
    [1]_ and [2]_ have been reviewed, but the model is only put together in
    the review of [3]_. Many other forms of this equation exist with different
    functions for `F` and `S`.

    Examples
    --------
    >>> Chen_Edelstein(m=0.106, x=0.2, D=0.0212, rhol=567, rhog=18.09,
    ... mul=156E-6, mug=7.11E-6, kl=0.086, Cpl=2730, Hvap=2E5, sigma=0.02,
    ... dPsat=1E5, Te=3)
    3289.058731974052

    See Also
    --------
    turbulent_Dittus_Boelter
    Forster_Zuber

    References
    ----------
    .. [1] Chen, J. C. "Correlation for Boiling Heat Transfer to Saturated
       Fluids in Convective Flow." Industrial & Engineering Chemistry Process
       Design and Development 5, no. 3 (July 1, 1966): 322-29.
       doi:10.1021/i260019a023.
    .. [2] Edelstein, Sergio, A. J. Pérez, and J. C. Chen. "Analytic
       Representation of Convective Boiling Functions." AIChE Journal 30, no.
       5 (September 1, 1984): 840-41. doi:10.1002/aic.690300528.
    .. [3] Bertsch, Stefan S., Eckhard A. Groll, and Suresh V. Garimella.
       "Review and Comparative Analysis of Studies on Saturated Flow Boiling in
       Small Channels." Nanoscale and Microscale Thermophysical Engineering 12,
       no. 3 (September 4, 2008): 187-227. doi:10.1080/15567260802317357.
    '''
    G = m/(pi/4*D**2)
    Rel = D*G*(1-x)/mul
    Prl = Prandtl(Cp=Cpl, mu=mul, k=kl)
    hl = turbulent_Dittus_Boelter(Re=Rel, Pr=Prl)*kl/D

    Xtt = Lockhart_Martinelli_Xtt(x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug)
    F = (1 + Xtt**-0.5)**1.78
    Re = Rel*F**1.25
    S = 0.9622 - 0.5822*atan(Re/6.18E4)
    hnb = Forster_Zuber(Te=Te, dPsat=dPsat, Cpl=Cpl, kl=kl, mul=mul, sigma=sigma,
                       Hvap=Hvap, rhol=rhol, rhog=rhog)
    return hnb*S + hl*F