def testOverlap(self): """Create a simple network to test the region.""" rawParams = {"outputWidth": 8 * 2048} net = Network() rawSensor = net.addRegion("raw", "py.RawSensor", json.dumps(rawParams)) l2c = net.addRegion("L2", "py.ColumnPoolerRegion", "") net.link("raw", "L2", "UniformLink", "") self.assertEqual(rawSensor.getParameterUInt32("outputWidth"), l2c.getParameterUInt32("inputWidth"), "Incorrect outputWidth parameter") rawSensor.executeCommand('addDataToQueue', [2, 4, 6], 0, 42) rawSensor.executeCommand('addDataToQueue', [2, 42, 1023], 1, 43) rawSensor.executeCommand('addDataToQueue', [18, 19, 20], 0, 44) # Run the network and check outputs are as expected net.run(3)
def _createNetwork(inverseReadoutResolution, anchorInputSize, dualPhase=False): """ Create a simple network connecting sensor and motor inputs to the location region. Use :meth:`RawSensor.addDataToQueue` to add sensor input and growth candidates. Use :meth:`RawValues.addDataToQueue` to add motor input. :: +----------+ [ sensor* ] --> | | --> [ activeCells ] [ candidates* ] --> | location | --> [ learnableCells ] [ motor ] --> | | --> [ sensoryAssociatedCells ] +----------+ :param inverseReadoutResolution: Specifies the diameter of the circle of phases in the rhombus encoded by a bump. :type inverseReadoutResolution: int :type anchorInputSize: int :param anchorInputSize: The number of input bits in the anchor input. .. note:: (*) This function will only add the 'sensor' and 'candidates' regions when 'anchorInputSize' is greater than zero. This is useful if you would like to compute locations ignoring sensor input .. seealso:: - :py:func:`htmresearch.frameworks.location.path_integration_union_narrowing.createRatModuleFromReadoutResolution` """ net = Network() # Create simple region to pass motor commands as displacement vectors (dx, dy) net.addRegion("motor", "py.RawValues", json.dumps({"outputWidth": 2})) if anchorInputSize > 0: # Create simple region to pass growth candidates net.addRegion("candidates", "py.RawSensor", json.dumps({"outputWidth": anchorInputSize})) # Create simple region to pass sensor input net.addRegion("sensor", "py.RawSensor", json.dumps({"outputWidth": anchorInputSize})) # Initialize region with 5 modules varying scale by sqrt(2) and 4 different # random orientations for each scale scale = [] orientation = [] for i in range(5): for _ in range(4): angle = np.radians(random.gauss(7.5, 7.5)) orientation.append(random.choice([angle, -angle])) scale.append(10.0 * (math.sqrt(2)**i)) # Create location region params = computeRatModuleParametersFromReadoutResolution( inverseReadoutResolution) params.update({ "moduleCount": len(scale), "scale": scale, "orientation": orientation, "anchorInputSize": anchorInputSize, "activationThreshold": 8, "initialPermanence": 1.0, "connectedPermanence": 0.5, "learningThreshold": 8, "sampleSize": 10, "permanenceIncrement": 0.1, "permanenceDecrement": 0.0, "dualPhase": dualPhase, "bumpOverlapMethod": "probabilistic" }) net.addRegion("location", "py.GridCellLocationRegion", json.dumps(params)) if anchorInputSize > 0: # Link sensor net.link("sensor", "location", "UniformLink", "", srcOutput="dataOut", destInput="anchorInput") net.link("sensor", "location", "UniformLink", "", srcOutput="resetOut", destInput="resetIn") net.link("candidates", "location", "UniformLink", "", srcOutput="dataOut", destInput="anchorGrowthCandidates") # Link motor input net.link("motor", "location", "UniformLink", "", srcOutput="dataOut", destInput="displacement") # Initialize network objects net.initialize() return net
def main(parameters=default_parameters, argv=None, verbose=True): if verbose: import pprint print("Parameters:") pprint.pprint(parameters, indent=4) print("") # Read the input file. records = [] with open(_INPUT_FILE_PATH, "r") as fin: reader = csv.reader(fin) headers = next(reader) next(reader) next(reader) for record in reader: records.append(record) net = Network() # Make the Encoders. These will convert input data into binary representations. dateEncoderRegion = net.addRegion( 'dateEncoder', 'DateEncoderRegion', str( dict(timeOfDay_width=parameters["enc"]["time"]["timeOfDay"][0], timeOfDay_radius=parameters["enc"]["time"]["timeOfDay"][1], weekend_width=parameters["enc"]["time"]["weekend"]))) valueEncoderRegion = net.addRegion( 'valueEncoder', 'RDSEEncoderRegion', str( dict(size=parameters["enc"]["value"]["size"], sparsity=parameters["enc"]["value"]["sparsity"], resolution=parameters["enc"]["value"]["resolution"]))) # Make the HTM. SpatialPooler & TemporalMemory & associated tools. spParams = parameters["sp"] spRegion = net.addRegion( 'sp', 'SPRegion', str( dict( columnCount=spParams['columnCount'], potentialPct=spParams["potentialPct"], potentialRadius=0, # 0 is auto assign as inputWith globalInhibition=True, localAreaDensity=spParams["localAreaDensity"], synPermInactiveDec=spParams["synPermInactiveDec"], synPermActiveInc=spParams["synPermActiveInc"], synPermConnected=spParams["synPermConnected"], boostStrength=spParams["boostStrength"], wrapAround=True))) tmParams = parameters["tm"] tmRegion = net.addRegion( 'tm', 'TMRegion', str( dict(columnCount=spParams['columnCount'], cellsPerColumn=tmParams["cellsPerColumn"], activationThreshold=tmParams["activationThreshold"], initialPermanence=tmParams["initialPerm"], connectedPermanence=spParams["synPermConnected"], minThreshold=tmParams["minThreshold"], maxNewSynapseCount=tmParams["newSynapseCount"], permanenceIncrement=tmParams["permanenceInc"], permanenceDecrement=tmParams["permanenceDec"], predictedSegmentDecrement=0.0, maxSegmentsPerCell=tmParams["maxSegmentsPerCell"], maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"]))) net.link('dateEncoder', 'sp', '', '', 'encoded', 'bottomUpIn') net.link('valueEncoder', 'sp', '', '', 'encoded', 'bottomUpIn') net.link('sp', 'tm', '', '', 'bottomUpOut', 'bottomUpIn') net.initialize() # Iterate through every datum in the dataset, record the inputs & outputs. inputs = [] anomaly = [] for count, record in enumerate(records): # Convert date string into Python date object. dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M") # Convert data value string into float. consumption = float(record[1]) inputs.append(consumption) # Call the encoders to create bit representations for each value. These are SDR objects. dateEncoderRegion.setParameterInt64('sensedTime', int(dateString.timestamp())) valueEncoderRegion.setParameterReal64('sensedValue', consumption) net.run(1) anomaly.append(np.array(tmRegion.getOutputArray("anomaly"))[0]) try: import matplotlib.pyplot as plt except: print("WARNING: failed to import matplotlib, plots cannot be shown.") return plt.title("Anomaly Score") plt.xlabel("Time") plt.ylabel("Power Consumption") inputs = np.array(inputs) / max(inputs) plt.plot( np.arange(len(inputs)), inputs, 'red', np.arange(len(inputs)), anomaly, 'blue', ) plt.legend(labels=('Input', 'Anomaly Score')) plt.show() return