Example #1
0
def rename(args):
    """
    %prog rename in.gff3 switch.ids > reindexed.gff3

    Change the IDs within the gff3.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(rename.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    ingff3, switch = args
    switch = DictFile(switch)

    gff = Gff(ingff3)
    for g in gff:
        id, = g.attributes["ID"]
        newname = switch.get(id, id)
        g.attributes["ID"] = [newname]

        if "Parent" in g.attributes:
            parents = g.attributes["Parent"]
            g.attributes["Parent"] = [switch.get(x, x) for x in parents]

        g.update_attributes()
        print g
Example #2
0
def rename(args):
    """
    %prog rename in.gff3 switch.ids > reindexed.gff3

    Change the IDs within the gff3.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(rename.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    ingff3, switch = args
    switch = DictFile(switch)

    gff = Gff(ingff3)
    for g in gff:
        id, = g.attributes["ID"]
        newname = switch.get(id, id)
        g.attributes["ID"] = [newname]

        if "Parent" in g.attributes:
            parents = g.attributes["Parent"]
            g.attributes["Parent"] = [switch.get(x, x) for x in parents]

        g.update_attributes()
        print g
Example #3
0
def libsvm(args):
    """
    %prog libsvm csvfile prefix.ids

    Convert csv file to LIBSVM format. `prefix.ids` contains the prefix mapping.
    Ga -1
    Gr 1

    So the feature in the first column of csvfile get scanned with the prefix
    and mapped to different classes. Formatting spec:

    http://svmlight.joachims.org/
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(libsvm.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    csvfile, prefixids = args
    d = DictFile(prefixids)
    fp = open(csvfile)
    fp.next()
    for row in fp:
        atoms = row.split()
        klass = atoms[0]
        kp = klass.split("_")[0]
        klass = d.get(kp, "0")
        feats = ["{0}:{1}".format(i + 1, x) for i, x in enumerate(atoms[1:])]
        print " ".join([klass] + feats)
Example #4
0
def top10(args):
    """
    %prog top10 blastfile.best

    Count the most frequent 10 hits. Usually the BLASTFILE needs to be screened
    the get the best match. You can also provide an .ids file to query the ids.
    For example the ids file can contain the seqid to species mapping.

    The ids file is two-column, and can sometimes be generated by
    `jcvi.formats.fasta ids --description`.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(top10.__doc__)
    p.add_option("--ids", default=None,
                help="Two column ids file to query seqid [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    blastfile, = args
    mapping = DictFile(opts.ids, delimiter="\t") if opts.ids else {}

    cmd = "cut -f2 {0}".format(blastfile)
    cmd += " | sort | uniq -c | sort -k1,1nr | head"
    fp = popen(cmd)
    for row in fp:
        count, seqid = row.split()
        nseqid = mapping.get(seqid, seqid)
        print "\t".join((count, nseqid))
Example #5
0
def header(args):
    """
    %prog header map conversion_table

    Rename lines in the map header. The mapping of old names to new names are
    stored in two-column `conversion_table`.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(header.__doc__)
    p.add_option("--prefix", default="",
                 help="Prepend text to line number [default: %default]")
    p.add_option("--ids", help="Write ids to file [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    mstmap, conversion_table = args
    data = MSTMap(mstmap)
    hd = data.header
    conversion = DictFile(conversion_table)
    newhd = [opts.prefix + conversion.get(x, x) for x in hd]

    print "\t".join(hd)
    print "--->"
    print "\t".join(newhd)

    ids = opts.ids
    if ids:
        fw = open(ids, "w")
        print >> fw, "\n".join(newhd)
        fw.close()
Example #6
0
File: ml.py Project: Hensonmw/jcvi
def libsvm(args):
    """
    %prog libsvm csvfile prefix.ids

    Convert csv file to LIBSVM format. `prefix.ids` contains the prefix mapping.
    Ga -1
    Gr 1

    So the feature in the first column of csvfile get scanned with the prefix
    and mapped to different classes. Formatting spec:

    http://svmlight.joachims.org/
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(libsvm.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    csvfile, prefixids = args
    d = DictFile(prefixids)
    fp = open(csvfile)
    fp.next()
    for row in fp:
        atoms = row.split()
        klass = atoms[0]
        kp = klass.split("_")[0]
        klass = d.get(kp, "0")
        feats = ["{0}:{1}".format(i + 1, x) for i, x in enumerate(atoms[1:])]
        print " ".join([klass] + feats)
Example #7
0
def top10(args):
    """
    %prog top10 blastfile.best

    Count the most frequent 10 hits. Usually the BLASTFILE needs to be screened
    the get the best match. You can also provide an .ids file to query the ids.
    For example the ids file can contain the seqid to species mapping.

    The ids file is two-column, and can sometimes be generated by
    `jcvi.formats.fasta ids --description`.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(top10.__doc__)
    p.add_option("--top", default=10, type="int",
                help="Top N taxa to extract [default: %default]")
    p.add_option("--ids", default=None,
                help="Two column ids file to query seqid [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    blastfile, = args
    mapping = DictFile(opts.ids, delimiter="\t") if opts.ids else {}

    cmd = "cut -f2 {0}".format(blastfile)
    cmd += " | sort | uniq -c | sort -k1,1nr | head -n {0}".format(opts.top)
    fp = popen(cmd)
    for row in fp:
        count, seqid = row.split()
        nseqid = mapping.get(seqid, seqid)
        print "\t".join((count, nseqid))
Example #8
0
def covlen(args):
    """
    %prog covlen covfile fastafile

    Plot coverage vs length. `covfile` is two-column listing contig id and
    depth of coverage.
    """
    import numpy as np
    import pandas as pd
    import seaborn as sns
    from jcvi.formats.base import DictFile

    p = OptionParser(covlen.__doc__)
    p.add_option("--maxsize", default=1000000, type="int", help="Max contig size")
    p.add_option("--maxcov", default=100, type="int", help="Max contig size")
    p.add_option("--color", default='m', help="Color of the data points")
    p.add_option("--kind", default="scatter",
                 choices=("scatter", "reg", "resid", "kde", "hex"),
                 help="Kind of plot to draw")
    opts, args, iopts = p.set_image_options(args, figsize="8x8")

    if len(args) != 2:
        sys.exit(not p.print_help())

    covfile, fastafile = args
    cov = DictFile(covfile, cast=float)
    s = Sizes(fastafile)
    data = []
    maxsize, maxcov = opts.maxsize, opts.maxcov
    for ctg, size in s.iter_sizes():
        c = cov.get(ctg, 0)
        if size > maxsize:
            continue
        if c > maxcov:
            continue
        data.append((size, c))

    x, y = zip(*data)
    x = np.array(x)
    y = np.array(y)
    logging.debug("X size {0}, Y size {1}".format(x.size, y.size))

    df = pd.DataFrame()
    xlab, ylab = "Length", "Coverage of depth (X)"
    df[xlab] = x
    df[ylab] = y
    sns.jointplot(xlab, ylab, kind=opts.kind, data=df,
                  xlim=(0, maxsize), ylim=(0, maxcov),
                  stat_func=None, edgecolor="w", color=opts.color)

    figname = covfile + ".pdf"
    savefig(figname, dpi=iopts.dpi, iopts=iopts)
Example #9
0
def summary(args):
    """
    %prog summary diploid.napus.fractionation gmap.status

    Provide summary of fractionation. `fractionation` file is generated with
    loss(). `gmap.status` is generated with genestatus().
    """
    from jcvi.formats.base import DictFile
    from jcvi.utils.cbook import percentage, Registry

    p = OptionParser(summary.__doc__)
    p.add_option("--extra", help="Cross with extra tsv file [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    frfile, statusfile = args
    status = DictFile(statusfile)
    fp = open(frfile)
    registry = Registry()  # keeps all the tags for any given gene
    for row in fp:
        seqid, gene, tag = row.split()
        if tag == '.':
            registry[gene].append("outside")
        else:
            registry[gene].append("inside")
            if tag[0] == '[':
                registry[gene].append("no_syntenic_model")
                if tag.startswith("[S]"):
                    registry[gene].append("[S]")
                    gstatus = status.get(gene, None)
                    if gstatus == 'complete':
                        registry[gene].append("complete")
                    elif gstatus == 'pseudogene':
                        registry[gene].append("pseudogene")
                    elif gstatus == 'partial':
                        registry[gene].append("partial")
                    else:
                        registry[gene].append("gmap_fail")
                elif tag.startswith("[NS]"):
                    registry[gene].append("[NS]")
                    if "random" in tag or "Scaffold" in tag:
                        registry[gene].append("random")
                    else:
                        registry[gene].append("real_ns")
                elif tag.startswith("[NF]"):
                    registry[gene].append("[NF]")
            else:
                registry[gene].append("syntenic_model")

    inside = registry.count("inside")
    outside = registry.count("outside")
    syntenic = registry.count("syntenic_model")
    non_syntenic = registry.count("no_syntenic_model")
    s = registry.count("[S]")
    ns = registry.count("[NS]")
    nf = registry.count("[NF]")
    complete = registry.count("complete")
    pseudogene = registry.count("pseudogene")
    partial = registry.count("partial")
    gmap_fail = registry.count("gmap_fail")
    random = registry.count("random")
    real_ns = registry.count("real_ns")

    complete_models = registry.get_tag("complete")
    pseudogenes = registry.get_tag("pseudogene")
    partial_deletions = registry.get_tag("partial")

    m = "{0} inside synteny blocks\n".format(inside)
    m += "{0} outside synteny blocks\n".format(outside)
    m += "{0} has syntenic gene\n".format(syntenic)
    m += "{0} lack syntenic gene\n".format(non_syntenic)
    m += "{0} has sequence match in syntenic location\n".format(s)
    m += "{0} has sequence match in non-syntenic location\n".format(ns)
    m += "{0} has sequence match in un-ordered scaffolds\n".format(random)
    m += "{0} has sequence match in real non-syntenic location\n".format(real_ns)
    m += "{0} has no sequence match\n".format(nf)
    m += "{0} syntenic sequence - complete model\n".format(percentage(complete, s))
    m += "{0} syntenic sequence - partial model\n".format(percentage(partial, s))
    m += "{0} syntenic sequence - pseudogene\n".format(percentage(pseudogene, s))
    m += "{0} syntenic sequence - gmap fail\n".format(percentage(gmap_fail, s))
    print >> sys.stderr, m

    aa = ["complete_models", "partial_deletions", "pseudogenes"]
    bb = [complete_models, partial_deletions, pseudogenes]
    for a, b in zip(aa, bb):
        fw = open(a, "w")
        print >> fw, "\n".join(b)
        fw.close()

    extra = opts.extra
    if extra:
        registry.update_from(extra)

    fp.seek(0)
    fw = open("registry", "w")
    for row in fp:
        seqid, gene, tag = row.split()
        ts = registry[gene]
        print >> fw, "\t".join((seqid, gene, tag, "-".join(ts)))
    fw.close()

    logging.debug("Registry written.")
Example #10
0
def merge(args):
    """
    %prog merge protein-quartets registry LOST

    Merge protein quartets table with dna quartets registry. This is specific
    to the napus project.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(merge.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    quartets, registry, lost = args
    qq = DictFile(registry, keypos=1, valuepos=3)
    lost = DictFile(lost, keypos=1, valuepos=0, delimiter='|')
    qq.update(lost)
    fp = open(quartets)
    cases = {
        "AN,CN": 4,
        "BO,AN,CN": 8,
        "BO,CN": 2,
        "BR,AN": 1,
        "BR,AN,CN": 6,
        "BR,BO": 3,
        "BR,BO,AN": 5,
        "BR,BO,AN,CN": 9,
        "BR,BO,CN": 7,
    }
    ip = {
        "syntenic_model": "Syntenic_model_excluded_by_OMG",
        "complete": "Predictable",
        "partial": "Truncated",
        "pseudogene": "Pseudogene",
        "random": "Match_random",
        "real_ns": "Transposed",
        "gmap_fail": "GMAP_fail",
        "AN LOST": "AN_LOST",
        "CN LOST": "CN_LOST",
        "BR LOST": "BR_LOST",
        "BO LOST": "BO_LOST",
        "outside": "Outside_synteny_blocks",
        "[NF]": "Not_found",
    }
    for row in fp:
        atoms = row.strip().split("\t")
        genes = atoms[:4]
        tag = atoms[4]
        a, b, c, d = [qq.get(x, ".").rsplit("-", 1)[-1] for x in genes]
        qqs = [c, d, a, b]
        for i, q in enumerate(qqs):
            if atoms[i] != '.':
                qqs[i] = "syntenic_model"
        # Make comment
        comment = "Case{0}".format(cases[tag])
        dots = sum([1 for x in genes if x == '.'])
        if dots == 1:
            idx = genes.index(".")
            status = qqs[idx]
            status = ip[status]
            comment += "-" + status
        print row.strip() + "\t" + "\t".join(qqs + [comment])
Example #11
0
def covlen(args):
    """
    %prog covlen covfile fastafile

    Plot coverage vs length. `covfile` is two-column listing contig id and
    depth of coverage.
    """
    import numpy as np
    import pandas as pd
    import seaborn as sns
    from jcvi.formats.base import DictFile

    p = OptionParser(covlen.__doc__)
    p.add_option("--maxsize",
                 default=1000000,
                 type="int",
                 help="Max contig size")
    p.add_option("--maxcov", default=100, type="int", help="Max contig size")
    p.add_option("--color", default='m', help="Color of the data points")
    p.add_option("--kind",
                 default="scatter",
                 choices=("scatter", "reg", "resid", "kde", "hex"),
                 help="Kind of plot to draw")
    opts, args, iopts = p.set_image_options(args, figsize="8x8")

    if len(args) != 2:
        sys.exit(not p.print_help())

    covfile, fastafile = args
    cov = DictFile(covfile, cast=float)
    s = Sizes(fastafile)
    data = []
    maxsize, maxcov = opts.maxsize, opts.maxcov
    for ctg, size in s.iter_sizes():
        c = cov.get(ctg, 0)
        if size > maxsize:
            continue
        if c > maxcov:
            continue
        data.append((size, c))

    x, y = zip(*data)
    x = np.array(x)
    y = np.array(y)
    logging.debug("X size {0}, Y size {1}".format(x.size, y.size))

    df = pd.DataFrame()
    xlab, ylab = "Length", "Coverage of depth (X)"
    df[xlab] = x
    df[ylab] = y
    sns.jointplot(xlab,
                  ylab,
                  kind=opts.kind,
                  data=df,
                  xlim=(0, maxsize),
                  ylim=(0, maxcov),
                  stat_func=None,
                  edgecolor="w",
                  color=opts.color)

    figname = covfile + ".pdf"
    savefig(figname, dpi=iopts.dpi, iopts=iopts)
Example #12
0
def sizes(args):
    """
    %prog sizes gaps.bed a.fasta b.fasta

    Take the flanks of gaps within a.fasta, map them onto b.fasta. Compile the
    results to the gap size estimates in b. The output is detailed below:

    Columns are:
    1.  A scaffold
    2.  Start position
    3.  End position
    4.  Gap identifier
    5.  Gap size in A (= End - Start)
    6.  Gap size in B (based on BLAST, see below)

    For each gap, I extracted the left and right sequence (mostly 2Kb, but can be shorter
    if it runs into another gap) flanking the gap. The flanker names look like gap.00003L
    and gap.00003R means the left and right flanker of this particular gap, respectively.

    The BLAST output is used to calculate the gap size. For each flanker sequence, I took
    the best hit, and calculate the inner distance between the L match range and R range.
    The two flankers must map with at least 98% identity, and in the same orientation.

    NOTE the sixth column in the list file is not always a valid number. Other values are:
    -   na: both flankers are missing in B
    -   Singleton: one flanker is missing
    -   Different chr: flankers map to different scaffolds
    -   Strand +|-: flankers map in different orientations
    -   Negative value: the R flanker map before L flanker
    """
    from jcvi.formats.base import DictFile
    from jcvi.apps.align import blast

    p = OptionParser(sizes.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    gapsbed, afasta, bfasta = args
    pf = gapsbed.rsplit(".", 1)[0]
    extbed = pf + ".ext.bed"
    extfasta = pf + ".ext.fasta"

    if need_update(gapsbed, extfasta):
        extbed, extfasta = flanks([gapsbed, afasta])

    q = op.basename(extfasta).split(".")[0]
    r = op.basename(bfasta).split(".")[0]
    blastfile = "{0}.{1}.blast".format(q, r)

    if need_update([extfasta, bfasta], blastfile):
        blastfile = blast([bfasta, extfasta, "--wordsize=50", "--pctid=98"])

    labelsfile = blast_to_twobeds(blastfile)
    labels = DictFile(labelsfile, delimiter='\t')
    bed = Bed(gapsbed)
    for b in bed:
        b.score = b.span
        accn = b.accn
        print "\t".join((str(x) for x in (b.seqid, b.start - 1, b.end, accn,
                        b.score, labels.get(accn, "na"))))
Example #13
0
def summary(args):
    """
    %prog summary diploid.napus.fractionation gmap.status

    Provide summary of fractionation. `fractionation` file is generated with
    loss(). `gmap.status` is generated with genestatus().
    """
    from jcvi.formats.base import DictFile
    from jcvi.utils.cbook import percentage, Registry

    p = OptionParser(summary.__doc__)
    p.add_option("--extra",
                 help="Cross with extra tsv file [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    frfile, statusfile = args
    status = DictFile(statusfile)
    fp = open(frfile)
    registry = Registry()  # keeps all the tags for any given gene
    for row in fp:
        seqid, gene, tag = row.split()
        if tag == '.':
            registry[gene].append("outside")
        else:
            registry[gene].append("inside")
            if tag[0] == '[':
                registry[gene].append("no_syntenic_model")
                if tag.startswith("[S]"):
                    registry[gene].append("[S]")
                    gstatus = status.get(gene, None)
                    if gstatus == 'complete':
                        registry[gene].append("complete")
                    elif gstatus == 'pseudogene':
                        registry[gene].append("pseudogene")
                    elif gstatus == 'partial':
                        registry[gene].append("partial")
                    else:
                        registry[gene].append("gmap_fail")
                elif tag.startswith("[NS]"):
                    registry[gene].append("[NS]")
                    if "random" in tag or "Scaffold" in tag:
                        registry[gene].append("random")
                    else:
                        registry[gene].append("real_ns")
                elif tag.startswith("[NF]"):
                    registry[gene].append("[NF]")
            else:
                registry[gene].append("syntenic_model")

    inside = registry.count("inside")
    outside = registry.count("outside")
    syntenic = registry.count("syntenic_model")
    non_syntenic = registry.count("no_syntenic_model")
    s = registry.count("[S]")
    ns = registry.count("[NS]")
    nf = registry.count("[NF]")
    complete = registry.count("complete")
    pseudogene = registry.count("pseudogene")
    partial = registry.count("partial")
    gmap_fail = registry.count("gmap_fail")
    random = registry.count("random")
    real_ns = registry.count("real_ns")

    complete_models = registry.get_tag("complete")
    pseudogenes = registry.get_tag("pseudogene")
    partial_deletions = registry.get_tag("partial")

    m = "{0} inside synteny blocks\n".format(inside)
    m += "{0} outside synteny blocks\n".format(outside)
    m += "{0} has syntenic gene\n".format(syntenic)
    m += "{0} lack syntenic gene\n".format(non_syntenic)
    m += "{0} has sequence match in syntenic location\n".format(s)
    m += "{0} has sequence match in non-syntenic location\n".format(ns)
    m += "{0} has sequence match in un-ordered scaffolds\n".format(random)
    m += "{0} has sequence match in real non-syntenic location\n".format(
        real_ns)
    m += "{0} has no sequence match\n".format(nf)
    m += "{0} syntenic sequence - complete model\n".format(
        percentage(complete, s))
    m += "{0} syntenic sequence - partial model\n".format(
        percentage(partial, s))
    m += "{0} syntenic sequence - pseudogene\n".format(
        percentage(pseudogene, s))
    m += "{0} syntenic sequence - gmap fail\n".format(percentage(gmap_fail, s))
    print >> sys.stderr, m

    aa = ["complete_models", "partial_deletions", "pseudogenes"]
    bb = [complete_models, partial_deletions, pseudogenes]
    for a, b in zip(aa, bb):
        fw = open(a, "w")
        print >> fw, "\n".join(b)
        fw.close()

    extra = opts.extra
    if extra:
        registry.update_from(extra)

    fp.seek(0)
    fw = open("registry", "w")
    for row in fp:
        seqid, gene, tag = row.split()
        ts = registry[gene]
        print >> fw, "\t".join((seqid, gene, tag, "-".join(ts)))
    fw.close()

    logging.debug("Registry written.")
Example #14
0
def merge(args):
    """
    %prog merge protein-quartets registry LOST

    Merge protein quartets table with dna quartets registry. This is specific
    to the napus project.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(merge.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    quartets, registry, lost = args
    qq = DictFile(registry, keypos=1, valuepos=3)
    lost = DictFile(lost, keypos=1, valuepos=0, delimiter='|')
    qq.update(lost)
    fp = open(quartets)
    cases = {
        "AN,CN": 4,
        "BO,AN,CN": 8,
        "BO,CN": 2,
        "BR,AN": 1,
        "BR,AN,CN": 6,
        "BR,BO": 3,
        "BR,BO,AN": 5,
        "BR,BO,AN,CN": 9,
        "BR,BO,CN": 7,
    }
    ip = {
        "syntenic_model": "Syntenic_model_excluded_by_OMG",
        "complete": "Predictable",
        "partial": "Truncated",
        "pseudogene": "Pseudogene",
        "random": "Match_random",
        "real_ns": "Transposed",
        "gmap_fail": "GMAP_fail",
        "AN LOST": "AN_LOST",
        "CN LOST": "CN_LOST",
        "BR LOST": "BR_LOST",
        "BO LOST": "BO_LOST",
        "outside": "Outside_synteny_blocks",
        "[NF]": "Not_found",
    }
    for row in fp:
        atoms = row.strip().split("\t")
        genes = atoms[:4]
        tag = atoms[4]
        a, b, c, d = [qq.get(x, ".").rsplit("-", 1)[-1] for x in genes]
        qqs = [c, d, a, b]
        for i, q in enumerate(qqs):
            if atoms[i] != '.':
                qqs[i] = "syntenic_model"
        # Make comment
        comment = "Case{0}".format(cases[tag])
        dots = sum([1 for x in genes if x == '.'])
        if dots == 1:
            idx = genes.index(".")
            status = qqs[idx]
            status = ip[status]
            comment += "-" + status
        print row.strip() + "\t" + "\t".join(qqs + [comment])