Example #1
0
def libsvm(args):
    """
    %prog libsvm csvfile prefix.ids

    Convert csv file to LIBSVM format. `prefix.ids` contains the prefix mapping.
    Ga -1
    Gr 1

    So the feature in the first column of csvfile get scanned with the prefix
    and mapped to different classes. Formatting spec:

    http://svmlight.joachims.org/
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(libsvm.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    csvfile, prefixids = args
    d = DictFile(prefixids)
    fp = open(csvfile)
    fp.next()
    for row in fp:
        atoms = row.split()
        klass = atoms[0]
        kp = klass.split("_")[0]
        klass = d.get(kp, "0")
        feats = ["{0}:{1}".format(i + 1, x) for i, x in enumerate(atoms[1:])]
        print " ".join([klass] + feats)
Example #2
0
def top10(args):
    """
    %prog top10 blastfile.best

    Count the most frequent 10 hits. Usually the BLASTFILE needs to be screened
    the get the best match. You can also provide an .ids file to query the ids.
    For example the ids file can contain the seqid to species mapping.

    The ids file is two-column, and can sometimes be generated by
    `jcvi.formats.fasta ids --description`.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(top10.__doc__)
    p.add_option("--ids", default=None,
                help="Two column ids file to query seqid [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    blastfile, = args
    mapping = DictFile(opts.ids, delimiter="\t") if opts.ids else {}

    cmd = "cut -f2 {0}".format(blastfile)
    cmd += " | sort | uniq -c | sort -k1,1nr | head"
    fp = popen(cmd)
    for row in fp:
        count, seqid = row.split()
        nseqid = mapping.get(seqid, seqid)
        print "\t".join((count, nseqid))
Example #3
0
def header(args):
    """
    %prog header map conversion_table

    Rename lines in the map header. The mapping of old names to new names are
    stored in two-column `conversion_table`.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(header.__doc__)
    p.add_option("--prefix", default="",
                 help="Prepend text to line number [default: %default]")
    p.add_option("--ids", help="Write ids to file [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    mstmap, conversion_table = args
    data = MSTMap(mstmap)
    hd = data.header
    conversion = DictFile(conversion_table)
    newhd = [opts.prefix + conversion.get(x, x) for x in hd]

    print "\t".join(hd)
    print "--->"
    print "\t".join(newhd)

    ids = opts.ids
    if ids:
        fw = open(ids, "w")
        print >> fw, "\n".join(newhd)
        fw.close()
Example #4
0
def rename(args):
    """
    %prog rename in.gff3 switch.ids > reindexed.gff3

    Change the IDs within the gff3.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(rename.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    ingff3, switch = args
    switch = DictFile(switch)

    gff = Gff(ingff3)
    for g in gff:
        id, = g.attributes["ID"]
        newname = switch.get(id, id)
        g.attributes["ID"] = [newname]

        if "Parent" in g.attributes:
            parents = g.attributes["Parent"]
            g.attributes["Parent"] = [switch.get(x, x) for x in parents]

        g.update_attributes()
        print g
Example #5
0
def fillrbh(args):
    from jcvi.formats.base import DictFile

    p = OptionParser(fillrbh.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    blocksfile, rbhfile, orthofile = args

    # Generate mapping both ways
    adict = DictFile(rbhfile)
    bdict = DictFile(rbhfile, keypos=1, valuepos=0)
    adict.update(bdict)

    fp = open(blocksfile)
    fw = open(orthofile, "w")
    nrecruited = 0
    for row in fp:
        a, b = row.split()
        c = '.'
        if b == '.':
            if a in adict:
                b = adict[a]
                nrecruited += 1
                c = 'rbh'
        else:
            c = 'syntelog'
        print("\t".join((a, b, c)), file=fw)

    logging.debug("Recruited {0} pairs from RBH.".format(nrecruited))
    fp.close()
    fw.close()
Example #6
0
def rename(args):
    """
    %prog rename in.gff3 switch.ids > reindexed.gff3

    Change the IDs within the gff3.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(rename.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    ingff3, switch = args
    switch = DictFile(switch)

    gff = Gff(ingff3)
    for g in gff:
        id, = g.attributes["ID"]
        newname = switch.get(id, id)
        g.attributes["ID"] = [newname]

        if "Parent" in g.attributes:
            parents = g.attributes["Parent"]
            g.attributes["Parent"] = [switch.get(x, x) for x in parents]

        g.update_attributes()
        print g
Example #7
0
def top10(args):
    """
    %prog top10 blastfile.best

    Count the most frequent 10 hits. Usually the BLASTFILE needs to be screened
    the get the best match. You can also provide an .ids file to query the ids.
    For example the ids file can contain the seqid to species mapping.

    The ids file is two-column, and can sometimes be generated by
    `jcvi.formats.fasta ids --description`.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(top10.__doc__)
    p.add_option("--top", default=10, type="int",
                help="Top N taxa to extract [default: %default]")
    p.add_option("--ids", default=None,
                help="Two column ids file to query seqid [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    blastfile, = args
    mapping = DictFile(opts.ids, delimiter="\t") if opts.ids else {}

    cmd = "cut -f2 {0}".format(blastfile)
    cmd += " | sort | uniq -c | sort -k1,1nr | head -n {0}".format(opts.top)
    fp = popen(cmd)
    for row in fp:
        count, seqid = row.split()
        nseqid = mapping.get(seqid, seqid)
        print "\t".join((count, nseqid))
Example #8
0
def fillrbh(args):
    from jcvi.formats.base import DictFile

    p = OptionParser(fillrbh.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    blocksfile, rbhfile, orthofile = args

    # Generate mapping both ways
    adict = DictFile(rbhfile)
    bdict = DictFile(rbhfile, keypos=1, valuepos=0)
    adict.update(bdict)

    fp = open(blocksfile)
    fw = open(orthofile, "w")
    nrecruited = 0
    for row in fp:
        a, b = row.split()
        if b == '.':
            if a in adict:
                b = adict[a]
                nrecruited += 1
                b += "'"
        print("\t".join((a, b)), file=fw)

    logging.debug("Recruited {0} pairs from RBH.".format(nrecruited))
    fp.close()
    fw.close()
Example #9
0
def annotation(args):
    """
    %prog annotation blastfile > annotations

    Create simple two column files from the first two coluns in blastfile. Use
    --queryids and --subjectids to switch IDs or descriptions.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(annotation.__doc__)
    p.add_option("--queryids",
                 help="Query IDS file to switch [default: %default]")
    p.add_option("--subjectids",
                 help="Subject IDS file to switch [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    blastfile, = args

    d = "\t"
    qids = DictFile(opts.queryids, delimiter=d) if opts.queryids else None
    sids = DictFile(opts.subjectids, delimiter=d) if opts.subjectids else None
    blast = Blast(blastfile)
    for b in blast:
        query, subject = b.query, b.subject
        if qids:
            query = qids[query]
        if sids:
            subject = sids[subject]
        print "\t".join((query, subject))
Example #10
0
File: ml.py Project: Hensonmw/jcvi
def libsvm(args):
    """
    %prog libsvm csvfile prefix.ids

    Convert csv file to LIBSVM format. `prefix.ids` contains the prefix mapping.
    Ga -1
    Gr 1

    So the feature in the first column of csvfile get scanned with the prefix
    and mapped to different classes. Formatting spec:

    http://svmlight.joachims.org/
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(libsvm.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    csvfile, prefixids = args
    d = DictFile(prefixids)
    fp = open(csvfile)
    fp.next()
    for row in fp:
        atoms = row.split()
        klass = atoms[0]
        kp = klass.split("_")[0]
        klass = d.get(kp, "0")
        feats = ["{0}:{1}".format(i + 1, x) for i, x in enumerate(atoms[1:])]
        print " ".join([klass] + feats)
Example #11
0
def covlen(args):
    """
    %prog covlen covfile fastafile

    Plot coverage vs length. `covfile` is two-column listing contig id and
    depth of coverage.
    """
    import numpy as np
    import pandas as pd
    import seaborn as sns
    from jcvi.formats.base import DictFile

    p = OptionParser(covlen.__doc__)
    p.add_option("--maxsize", default=1000000, type="int", help="Max contig size")
    p.add_option("--maxcov", default=100, type="int", help="Max contig size")
    p.add_option("--color", default='m', help="Color of the data points")
    p.add_option("--kind", default="scatter",
                 choices=("scatter", "reg", "resid", "kde", "hex"),
                 help="Kind of plot to draw")
    opts, args, iopts = p.set_image_options(args, figsize="8x8")

    if len(args) != 2:
        sys.exit(not p.print_help())

    covfile, fastafile = args
    cov = DictFile(covfile, cast=float)
    s = Sizes(fastafile)
    data = []
    maxsize, maxcov = opts.maxsize, opts.maxcov
    for ctg, size in s.iter_sizes():
        c = cov.get(ctg, 0)
        if size > maxsize:
            continue
        if c > maxcov:
            continue
        data.append((size, c))

    x, y = zip(*data)
    x = np.array(x)
    y = np.array(y)
    logging.debug("X size {0}, Y size {1}".format(x.size, y.size))

    df = pd.DataFrame()
    xlab, ylab = "Length", "Coverage of depth (X)"
    df[xlab] = x
    df[ylab] = y
    sns.jointplot(xlab, ylab, kind=opts.kind, data=df,
                  xlim=(0, maxsize), ylim=(0, maxcov),
                  stat_func=None, edgecolor="w", color=opts.color)

    figname = covfile + ".pdf"
    savefig(figname, dpi=iopts.dpi, iopts=iopts)
Example #12
0
def flanking(args):
    """
    %prog flanking SI.ids liftover.bed master.txt master-removed.txt

    Extract flanking genes for given SI loci.
    """
    p = OptionParser(flanking.__doc__)
    p.add_option("-N",
                 default=50,
                 type="int",
                 help="How many genes on both directions")
    opts, args = p.parse_args(args)

    if len(args) != 4:
        sys.exit(not p.print_help())

    SI, liftover, master, te = args
    N = opts.N
    SI = SetFile(SI, column=0, delimiter='.')
    liftover = Bed(liftover)
    order = liftover.order
    neighbors = set()
    for s in SI:
        si, s = order[s]
        LB = max(si - N, 0)
        RB = min(si + N, len(liftover))
        for j in xrange(LB, RB + 1):
            a = liftover[j]
            if a.seqid != s.seqid:
                continue
            neighbors.add(a.accn)

    dmain = DictFile(master, keypos=0, valuepos=None, delimiter='\t')
    dte = DictFile(te, keypos=0, valuepos=None, delimiter='\t')
    header = open(master).next()
    print "\t".join(("SI/Neighbor", "Gene/TE", header.strip()))
    for a in liftover:
        s = a.accn
        if s not in neighbors:
            continue

        tag = "SI" if s in SI else "neighbor"
        if s in dmain:
            d = dmain[s]
            print "\t".join([tag, "gene"] + d)
        elif s in dte:
            d = dte[s]
            print "\t".join([tag, "TE"] + d)
Example #13
0
def some(args):
    """
    %prog some idsfile afastq [bfastq]

    Select a subset of the reads with ids present in the idsfile.
    `bfastq` is optional (only if reads are paired)
    """
    p = OptionParser(some.__doc__)
    opts, args = p.parse_args(args)

    if len(args) not in (2, 3):
        sys.exit(not p.print_help())

    idsfile, afastq, = args[:2]
    bfastq = args[2] if len(args) == 3 else None

    ids = DictFile(idsfile, valuepos=None)

    ai = iter_fastq(open(afastq))
    arec = ai.next()
    if bfastq:
        bi = iter_fastq(open(bfastq))
        brec = bi.next()

    while arec:
        if arec.name[1:] in ids:
            print arec
            if bfastq:
                print brec

        arec = ai.next()
        if bfastq:
            brec = bi.next()
Example #14
0
def logodds(args):
    """
    %prog logodds cnt1 cnt2

    Compute log likelihood between two db.
    """
    from math import log
    from jcvi.formats.base import DictFile

    p = OptionParser(logodds.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    cnt1, cnt2 = args
    d = DictFile(cnt2)
    fp = open(cnt1)
    for row in fp:
        scf, c1 = row.split()
        c2 = d[scf]
        c1, c2 = float(c1), float(c2)
        c1 += 1
        c2 += 1
        score = int(100 * (log(c1) - log(c2)))
        print("{0}\t{1}".format(scf, score))
Example #15
0
def _draw_trees(trees,
                nrow=1,
                ncol=1,
                rmargin=0.3,
                iopts=None,
                outdir=".",
                shfile=None,
                **kwargs):
    """
    Draw one or multiple trees on one plot.
    """
    from jcvi.graphics.tree import draw_tree

    if shfile:
        SHs = DictFile(shfile, delimiter="\t")

    ntrees = len(trees)
    n = nrow * ncol
    for x in range(int(ceil(float(ntrees) / n))):
        fig = plt.figure(1, (iopts.w,
                             iopts.h)) if iopts else plt.figure(1, (5, 5))
        root = fig.add_axes([0, 0, 1, 1])

        xiv = 1.0 / ncol
        yiv = 1.0 / nrow
        xstart = list(np.arange(0, 1, xiv)) * nrow
        ystart = list(chain(*zip(*[list(np.arange(0, 1, yiv))[::-1]] * ncol)))
        for i in range(n * x, n * (x + 1)):
            if i == ntrees:
                break
            ax = fig.add_axes([xstart[i % n], ystart[i % n], xiv, yiv])
            f = trees.keys()[i]
            tree = trees[f]
            try:
                SH = SHs[f]
            except:
                SH = None
            draw_tree(ax,
                      tree,
                      rmargin=rmargin,
                      reroot=False,
                      supportcolor="r",
                      SH=SH,
                      **kwargs)

        root.set_xlim(0, 1)
        root.set_ylim(0, 1)
        root.set_axis_off()

        format = iopts.format if iopts else "pdf"
        dpi = iopts.dpi if iopts else 300
        if n == 1:
            image_name = f.rsplit(".", 1)[0] + "." + format
        else:
            image_name = "trees{0}.{1}".format(x, format)
        image_name = op.join(outdir, image_name)
        savefig(image_name, dpi=dpi, iopts=iopts)
        plt.clf()
Example #16
0
def geneinfo(args):
    """
    %prog geneinfo pineapple.20141004.bed liftover.bed pineapple.20150413.bed \
                   note.txt interproscan.txt

    Build gene info table from various sources. The three beds contain
    information on the original scaffolds, linkage groups, and final selected
    loci (after removal of TEs and split loci). The final two text files contain
    AHRD and domain data.
    """
    p = OptionParser(geneinfo.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 5:
        sys.exit(not p.print_help())

    scfbed, liftoverbed, lgbed, note, ipr = args
    note = DictFile(note, delimiter="\t")
    scfbed = Bed(scfbed)
    lgorder = Bed(lgbed).order
    liftover = Bed(liftoverbed).order
    header = ("Accession Scaffold-position LG-position "
              "Description Interpro-domain Interpro-description "
              "GO-term KEGG".split())
    ipr = read_interpro(ipr)

    fw_clean = must_open("master.txt", "w")
    fw_removed = must_open("master-removed.txt", "w")

    for fw in (fw_clean, fw_removed):
        print("\t".join(header), file=fw)

    for b in scfbed:
        accession = b.accn
        scaffold_position = b.tag
        if accession in liftover:
            lg_position = liftover[accession][-1].tag
        else:
            lg_position = "split"
        fw = fw_clean if accession in lgorder else fw_removed
        description = note[accession]
        interpro = interpro_description = go = kegg = ""
        if accession in ipr:
            interpro, interpro_description, go, kegg = ipr[accession]
        print(
            "\t".join((
                accession,
                scaffold_position,
                lg_position,
                description,
                interpro,
                interpro_description,
                go,
                kegg,
            )),
            file=fw,
        )
    fw.close()
Example #17
0
def make_ortholog(blocksfile, rbhfile, orthofile):
    from jcvi.formats.base import DictFile

    # Generate mapping both ways
    adict = DictFile(rbhfile)
    bdict = DictFile(rbhfile, keypos=1, valuepos=0)
    adict.update(bdict)

    fp = open(blocksfile)
    fw = open(orthofile, "w")
    nrecruited = 0
    for row in fp:
        a, b = row.split()
        if b == '.':
            if a in adict:
                b = adict[a]
                nrecruited += 1
                b += "'"
        print >> fw, "\t".join((a, b))

    logging.debug("Recruited {0} pairs from RBH.".format(nrecruited))
    fp.close()
    fw.close()
Example #18
0
def make_ortholog(blocksfile, rbhfile, orthofile):
    from jcvi.formats.base import DictFile

    # Generate mapping both ways
    adict = DictFile(rbhfile)
    bdict = DictFile(rbhfile, keypos=1, valuepos=0)
    adict.update(bdict)

    fp = open(blocksfile)
    fw = open(orthofile, "w")
    nrecruited = 0
    for row in fp:
        a, b = row.split()
        if b == '.':
            if a in adict:
                b = adict[a]
                nrecruited += 1
                b += "'"
        print >> fw, "\t".join((a, b))

    logging.debug("Recruited {0} pairs from RBH.".format(nrecruited))
    fp.close()
    fw.close()
Example #19
0
def gaps(args):
    """
    %prog gaps idsfile fractionationfile gapsbed

    Check gene locations against gaps. `idsfile` contains a list of IDs to query
    into `fractionationfile` in order to get expected locations.
    """
    from jcvi.formats.base import DictFile
    from jcvi.apps.base import popen
    from jcvi.utils.cbook import percentage

    p = OptionParser(gaps.__doc__)
    p.add_option("--bdist",
                 default=0,
                 type="int",
                 help="Base pair distance [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    idsfile, frfile, gapsbed = args
    bdist = opts.bdist
    d = DictFile(frfile, keypos=1, valuepos=2)
    bedfile = idsfile + ".bed"
    fw = open(bedfile, "w")
    fp = open(idsfile)
    total = 0
    for row in fp:
        id = row.strip()
        hit = d[id]
        tag, pos = get_tag(hit, None)
        seqid, start, end = pos
        start, end = max(start - bdist, 1), end + bdist
        print >> fw, "\t".join(str(x) for x in (seqid, start - 1, end, id))
        total += 1
    fw.close()

    cmd = "intersectBed -a {0} -b {1} -v | wc -l".format(bedfile, gapsbed)
    not_in_gaps = popen(cmd).read()
    not_in_gaps = int(not_in_gaps)
    in_gaps = total - not_in_gaps
    print >> sys.stderr, "Ids in gaps: {1}".\
            format(total, percentage(in_gaps, total))
Example #20
0
def sort_layout(thread, listfile, column=0):
    """
    Sort the syntelog table according to chromomomal positions. First orient the
    contents against threadbed, then for contents not in threadbed, insert to
    the nearest neighbor.
    """
    from jcvi.formats.base import DictFile

    outfile = listfile.rsplit(".", 1)[0] + ".sorted.list"
    threadorder = thread.order
    fw = open(outfile, "w")
    lt = DictFile(listfile, keypos=column, valuepos=None)
    threaded = []
    imported = set()
    for t in thread:
        accn = t.accn
        if accn not in lt:
            continue

        imported.add(accn)
        atoms = lt[accn]
        threaded.append(atoms)

    assert len(threaded) == len(imported)

    total = sum(1 for x in open(listfile))
    logging.debug("Total: {0}, currently threaded: {1}".format(
        total, len(threaded)))
    fp = open(listfile)
    for row in fp:
        atoms = row.split()
        accn = atoms[0]
        if accn in imported:
            continue
        insert_into_threaded(atoms, threaded, threadorder)

    for atoms in threaded:
        print >> fw, "\t".join(atoms)

    fw.close()
    logging.debug("File `{0}` sorted to `{1}`.".format(outfile,
                                                       thread.filename))
Example #21
0
def agp(args):
    """
    %prog agp tpffile certificatefile agpfile

    Build agpfile from overlap certificates.

    Tiling Path File (tpf) is a file that lists the component and the gaps.
    It is a three-column file similar to below, also see jcvi.formats.agp.tpf():

    telomere        chr1	na
    AC229737.8      chr1    +
    AC202463.29     chr1    +

    Note: the orientation of the component is only used as a guide. If the
    orientation is derivable from a terminal overlap, it will use it regardless
    of what the tpf says.

    See jcvi.assembly.goldenpath.certificate() which generates a list of
    certificates based on agpfile. At first, it seems counter-productive to
    convert first agp to certificates then certificates back to agp.

    The certificates provide a way to edit the overlap information, so that the
    agpfile can be corrected (without changing agpfile directly).
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(agp.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    tpffile, certificatefile, agpfile = args
    orientationguide = DictFile(tpffile, valuepos=2)
    cert = Certificate(certificatefile)
    cert.write_AGP(agpfile, orientationguide=orientationguide)
Example #22
0
def gss(args):
    """
    %prog gss fastafile plateMapping

    Generate sequence files and metadata templates suited for gss submission.
    The FASTA file is assumed to be exported from the JCVI data delivery folder
    which looks like:

    >1127963806024 /library_name=SIL1T054-B-01-120KB /clear_start=0
    /clear_end=839 /primer_id=1049000104196 /trace_id=1064147620169
    /trace_file_id=1127963805941 /clone_insert_id=1061064364776
    /direction=reverse /sequencer_run_id=1064147620155
    /sequencer_plate_barcode=B906423 /sequencer_plate_well_coordinates=C3
    /sequencer_plate_96well_quadrant=1 /sequencer_plate_96well_coordinates=B02
    /template_plate_barcode=CC0251602AB /growth_plate_barcode=BB0273005AB
    AGCTTTAGTTTCAAGGATACCTTCATTGTCATTCCCGGTTATGATGATATCATCAAGATAAACAAGAATG
    ACAATGATACCTGTTTGGTTCTGAAGTGTAAAGAGGGTATGTTCAGCTTCAGATCTTCTAAACCCTTTGT
    CTAGTAAGCTGGCACTTAGCTTCCTATACCAAACCCTTTGTGATTGCTTCAGTCCATAAATTGCCTTTTT

    Plate mapping file maps the JTC `sequencer_plate_barcode` to external IDs.
    For example:
    B906423 SIL-001
    """
    p = OptionParser(gss.__doc__)

    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(p.print_help())

    fastafile, mappingfile = args
    seen = defaultdict(int)
    clone = defaultdict(set)

    plateMapping = DictFile(mappingfile)

    fw = open("MetaData.txt", "w")
    print(PublicationTemplate.format(**vars), file=fw)
    print(LibraryTemplate.format(**vars), file=fw)
    print(ContactTemplate.format(**vars), file=fw)
    logging.debug("Meta data written to `{0}`".format(fw.name))

    fw = open("GSS.txt", "w")
    fw_log = open("GSS.log", "w")
    for rec in SeqIO.parse(fastafile, "fasta"):
        # First pass just check well number matchings and populate sequences in
        # the same clone
        description = rec.description
        a = parse_description(description)
        direction = a["direction"][0]
        sequencer_plate_barcode = a["sequencer_plate_barcode"][0]
        sequencer_plate_well_coordinates = a[
            "sequencer_plate_well_coordinates"][0]
        sequencer_plate_96well_quadrant = a["sequencer_plate_96well_quadrant"][
            0]
        sequencer_plate_96well_coordinates = a[
            "sequencer_plate_96well_coordinates"][0]

        # Check the 96-well ID is correctly converted to 384-well ID
        w96 = sequencer_plate_96well_coordinates
        w96quad = int(sequencer_plate_96well_quadrant)
        w384 = sequencer_plate_well_coordinates
        assert convert_96_to_384(w96, w96quad) == w384

        plate = sequencer_plate_barcode
        assert plate in plateMapping, "{0} not found in `{1}` !".format(
            plate, mappingfile)

        plate = plateMapping[plate]
        d = Directions[direction]

        cloneID = "{0}{1}".format(plate, w384)
        gssID = "{0}{1}".format(cloneID, d)
        seen[gssID] += 1

        if seen[gssID] > 1:
            gssID = "{0}{1}".format(gssID, seen[gssID])

        seen[gssID] += 1
        clone[cloneID].add(gssID)

    seen = defaultdict(int)
    for rec in SeqIO.parse(fastafile, "fasta"):
        # need to populate gssID, mateID, cloneID, seq, plate, row, column
        description = rec.description
        a = parse_description(description)
        direction = a["direction"][0]
        sequencer_plate_barcode = a["sequencer_plate_barcode"][0]
        sequencer_plate_well_coordinates = a[
            "sequencer_plate_well_coordinates"][0]
        w384 = sequencer_plate_well_coordinates

        plate = sequencer_plate_barcode
        plate = plateMapping[plate]
        d = Directions[direction]

        cloneID = "{0}{1}".format(plate, w384)
        gssID = "{0}{1}".format(cloneID, d)
        seen[gssID] += 1

        if seen[gssID] > 1:
            logging.error("duplicate key {0} found".format(gssID))
            gssID = "{0}{1}".format(gssID, seen[gssID])

        othergss = clone[cloneID] - set([gssID])
        othergss = ", ".join(sorted(othergss))
        vars.update(locals())

        print(GSSTemplate.format(**vars), file=fw)

        # Write conversion logs to log file
        print("{0}\t{1}".format(gssID, description), file=fw_log)
        print("=" * 60, file=fw_log)

    logging.debug("A total of {0} seqs written to `{1}`".format(
        len(seen), fw.name))
    fw.close()
    fw_log.close()
Example #23
0
 def update_from(self, filename):
     from jcvi.formats.base import DictFile
     d = DictFile(filename)
     for k, v in d.items():
         self[k].append(v)
Example #24
0
def summary(args):
    """
    %prog summary diploid.napus.fractionation gmap.status

    Provide summary of fractionation. `fractionation` file is generated with
    loss(). `gmap.status` is generated with genestatus().
    """
    from jcvi.formats.base import DictFile
    from jcvi.utils.cbook import percentage, Registry

    p = OptionParser(summary.__doc__)
    p.add_option("--extra", help="Cross with extra tsv file [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    frfile, statusfile = args
    status = DictFile(statusfile)
    fp = open(frfile)
    registry = Registry()  # keeps all the tags for any given gene
    for row in fp:
        seqid, gene, tag = row.split()
        if tag == '.':
            registry[gene].append("outside")
        else:
            registry[gene].append("inside")
            if tag[0] == '[':
                registry[gene].append("no_syntenic_model")
                if tag.startswith("[S]"):
                    registry[gene].append("[S]")
                    gstatus = status.get(gene, None)
                    if gstatus == 'complete':
                        registry[gene].append("complete")
                    elif gstatus == 'pseudogene':
                        registry[gene].append("pseudogene")
                    elif gstatus == 'partial':
                        registry[gene].append("partial")
                    else:
                        registry[gene].append("gmap_fail")
                elif tag.startswith("[NS]"):
                    registry[gene].append("[NS]")
                    if "random" in tag or "Scaffold" in tag:
                        registry[gene].append("random")
                    else:
                        registry[gene].append("real_ns")
                elif tag.startswith("[NF]"):
                    registry[gene].append("[NF]")
            else:
                registry[gene].append("syntenic_model")

    inside = registry.count("inside")
    outside = registry.count("outside")
    syntenic = registry.count("syntenic_model")
    non_syntenic = registry.count("no_syntenic_model")
    s = registry.count("[S]")
    ns = registry.count("[NS]")
    nf = registry.count("[NF]")
    complete = registry.count("complete")
    pseudogene = registry.count("pseudogene")
    partial = registry.count("partial")
    gmap_fail = registry.count("gmap_fail")
    random = registry.count("random")
    real_ns = registry.count("real_ns")

    complete_models = registry.get_tag("complete")
    pseudogenes = registry.get_tag("pseudogene")
    partial_deletions = registry.get_tag("partial")

    m = "{0} inside synteny blocks\n".format(inside)
    m += "{0} outside synteny blocks\n".format(outside)
    m += "{0} has syntenic gene\n".format(syntenic)
    m += "{0} lack syntenic gene\n".format(non_syntenic)
    m += "{0} has sequence match in syntenic location\n".format(s)
    m += "{0} has sequence match in non-syntenic location\n".format(ns)
    m += "{0} has sequence match in un-ordered scaffolds\n".format(random)
    m += "{0} has sequence match in real non-syntenic location\n".format(real_ns)
    m += "{0} has no sequence match\n".format(nf)
    m += "{0} syntenic sequence - complete model\n".format(percentage(complete, s))
    m += "{0} syntenic sequence - partial model\n".format(percentage(partial, s))
    m += "{0} syntenic sequence - pseudogene\n".format(percentage(pseudogene, s))
    m += "{0} syntenic sequence - gmap fail\n".format(percentage(gmap_fail, s))
    print >> sys.stderr, m

    aa = ["complete_models", "partial_deletions", "pseudogenes"]
    bb = [complete_models, partial_deletions, pseudogenes]
    for a, b in zip(aa, bb):
        fw = open(a, "w")
        print >> fw, "\n".join(b)
        fw.close()

    extra = opts.extra
    if extra:
        registry.update_from(extra)

    fp.seek(0)
    fw = open("registry", "w")
    for row in fp:
        seqid, gene, tag = row.split()
        ts = registry[gene]
        print >> fw, "\t".join((seqid, gene, tag, "-".join(ts)))
    fw.close()

    logging.debug("Registry written.")
Example #25
0
def pastegenes(args):
    """
    %prog pastegenes coverage.list old.genes.bed new.genes.bed old.assembly

    Paste in zero or low coverage genes.  For a set of neighboring genes
    missing, add the whole cassette as unplaced scaffolds. For singletons the
    program will try to make a patch.
    """
    from jcvi.formats.base import DictFile
    from jcvi.utils.cbook import gene_name

    p = OptionParser(pastegenes.__doc__)
    p.add_option(
        "--cutoff",
        default=90,
        type="int",
        help="Coverage cutoff to call gene missing",
    )
    p.add_option(
        "--flank",
        default=2000,
        type="int",
        help="Get the seq of size on two ends",
    )
    p.add_option(
        "--maxsize",
        default=50000,
        type="int",
        help="Maximum size of patchers to be replaced",
    )
    opts, args = p.parse_args(args)

    if len(args) != 4:
        sys.exit(not p.print_help())

    coveragefile, oldbed, newbed, oldassembly = args
    cutoff = opts.cutoff
    flank = opts.flank
    maxsize = opts.maxsize

    coverage = DictFile(coveragefile, valuepos=2, cast=float)

    obed = Bed(oldbed)
    order = obed.order
    bed = [x for x in obed if x.accn in coverage]
    key = lambda x: coverage[x.accn] >= cutoff

    extrabed = "extra.bed"
    extendbed = "extend.bed"
    pastebed = "paste.bed"

    fw = open(extrabed, "w")
    fwe = open(extendbed, "w")
    fwp = open(pastebed, "w")
    fw_ids = open(extendbed + ".ids", "w")

    singletons, large, large_genes = 0, 0, 0
    for chr, chrbed in groupby(bed, key=lambda x: x.seqid):
        chrbed = list(chrbed)
        for good, beds in groupby(chrbed, key=key):
            if good:
                continue

            beds = list(beds)
            blocksize = len(set([gene_name(x.accn) for x in beds]))
            if blocksize == 1:
                singletons += 1
                accn = beds[0].accn
                gi, gb = order[accn]
                leftb = obed[gi - 1]
                rightb = obed[gi + 1]
                leftr = leftb.range
                rightr = rightb.range
                cur = gb.range
                distance_to_left, oo = range_distance(leftr, cur)
                distance_to_right, oo = range_distance(cur, rightr)
                span, oo = range_distance(leftr, rightr)

                if distance_to_left <= distance_to_right and distance_to_left > 0:
                    label = "LEFT"
                else:
                    label = "RIGHT"

                if 0 < span <= maxsize:
                    print(
                        "\t".join(
                            str(x) for x in (chr, leftb.start, rightb.end, gb.accn)
                        ),
                        file=fwp,
                    )

                print(leftb, file=fwe)
                print(gb, file=fwe)
                print(rightb, file=fwe)
                print(
                    "L:{0} R:{1} [{2}]".format(
                        distance_to_left, distance_to_right, label
                    ),
                    file=fwe,
                )
                print(gb.accn, file=fw_ids)
                continue

            large += 1
            large_genes += blocksize

            ranges = [(x.start, x.end) for x in beds]
            rmin, rmax = range_minmax(ranges)
            rmin -= flank
            rmax += flank

            name = "-".join((beds[0].accn, beds[-1].accn))
            print("\t".join(str(x) for x in (chr, rmin - 1, rmax, name)), file=fw)

    fw.close()
    fwe.close()

    extrabed = mergeBed(extrabed, d=flank, nms=True)
    fastaFromBed(extrabed, oldassembly, name=True)
    summary([extrabed])

    logging.debug("Singleton blocks : {0}".format(singletons))
    logging.debug("Large blocks : {0} ({1} genes)".format(large, large_genes))
Example #26
0
def main():
    """
    %prog bedfile id_mappings

    Takes a bedfile that contains the coordinates of features to plot on the
    chromosomes, and `id_mappings` file that map the ids to certain class. Each
    class will get assigned a unique color. `id_mappings` file is optional (if
    omitted, will not paint the chromosome features, except the centromere).
    """
    p = OptionParser(main.__doc__)
    p.add_option("--title",
                 default="Medicago truncatula v3.5",
                 help="title of the image [default: `%default`]")
    p.add_option("--gauge",
                 default=False,
                 action="store_true",
                 help="draw a gauge with size label [default: %default]")
    p.add_option(
        "--imagemap",
        default=False,
        action="store_true",
        help=
        "generate an HTML image map associated with the image [default: %default]"
    )
    p.add_option(
        "--winsize",
        default=50000,
        type="int",
        help=
        "if drawing an imagemap, specify the window size (bases) of each map element "
        "[default: %default bp]")
    p.add_option("--empty", help="Write legend for unpainted region")
    opts, args, iopts = p.set_image_options(figsize="6x6", dpi=300)

    if len(args) not in (1, 2):
        sys.exit(p.print_help())

    bedfile = args[0]
    mappingfile = None
    if len(args) == 2:
        mappingfile = args[1]

    winsize = opts.winsize
    imagemap = opts.imagemap
    w, h = iopts.w, iopts.h
    dpi = iopts.dpi

    prefix = bedfile.rsplit(".", 1)[0]
    figname = prefix + "." + opts.format
    if imagemap:
        imgmapfile = prefix + '.map'
        mapfh = open(imgmapfile, "w")
        print >> mapfh, '<map id="' + prefix + '">'

    if mappingfile:
        mappings = DictFile(mappingfile, delimiter="\t")
        classes = sorted(set(mappings.values()))
        logging.debug("A total of {0} classes found: {1}".format(
            len(classes), ','.join(classes)))
    else:
        mappings = {}
        classes = []
        logging.debug("No classes registered (no id_mappings given).")

    mycolors = "rgbymc"
    class_colors = dict(zip(classes, mycolors))

    bed = Bed(bedfile)
    chr_lens = {}
    centromeres = {}
    for b, blines in groupby(bed, key=(lambda x: x.seqid)):
        blines = list(blines)
        maxlen = max(x.end for x in blines)
        chr_lens[b] = maxlen

    for b in bed:
        accn = b.accn
        if accn == "centromere":
            centromeres[b.seqid] = b.start
        if accn in mappings:
            b.accn = mappings[accn]
        else:
            b.accn = '-'

    chr_number = len(chr_lens)
    assert chr_number == len(centromeres)

    fig = plt.figure(1, (w, h))
    root = fig.add_axes([0, 0, 1, 1])

    r = .7  # width and height of the whole chromosome set
    xstart, ystart = .15, .85
    xinterval = r / chr_number
    xwidth = xinterval * .5  # chromosome width
    max_chr_len = max(chr_lens.values())
    ratio = r / max_chr_len  # canvas / base

    # first the chromosomes
    for a, (chr, cent_position) in enumerate(sorted(centromeres.items())):
        clen = chr_lens[chr]
        xx = xstart + a * xinterval + .5 * xwidth
        yy = ystart - cent_position * ratio
        root.text(xx, ystart + .01, chr, ha="center")
        ChromosomeWithCentromere(root,
                                 xx,
                                 ystart,
                                 yy,
                                 ystart - clen * ratio,
                                 width=xwidth)

    chr_idxs = dict((a, i) for i, a in enumerate(sorted(chr_lens.keys())))

    alpha = .75
    # color the regions
    for chr in sorted(chr_lens.keys()):
        segment_size, excess = 0, 0
        bac_list = []
        for b in bed.sub_bed(chr):
            clen = chr_lens[chr]
            idx = chr_idxs[chr]
            klass = b.accn
            start = b.start
            end = b.end
            xx = xstart + idx * xinterval
            yystart = ystart - end * ratio
            yyend = ystart - start * ratio
            root.add_patch(
                Rectangle((xx, yystart),
                          xwidth,
                          yyend - yystart,
                          fc=class_colors.get(klass, "w"),
                          lw=0,
                          alpha=alpha))

            if imagemap:
                """
                `segment` : size of current BAC being investigated + `excess`
                `excess`  : left-over bases from the previous BAC, as a result of
                            iterating over `winsize` regions of `segment`
                """
                if excess == 0:
                    segment_start = start
                segment = (end - start + 1) + excess
                while True:
                    if segment < winsize:
                        bac_list.append(b.accn)
                        excess = segment
                        break
                    segment_end = segment_start + winsize - 1
                    tlx, tly, brx, bry = xx, (1 - ystart) + segment_start * ratio, \
                                  xx + xwidth, (1 - ystart) + segment_end * ratio
                    print >> mapfh, '\t' + write_ImageMapLine(tlx, tly, brx, bry, \
                            w, h, dpi, chr+":"+",".join(bac_list), segment_start, segment_end)

                    segment_start += winsize
                    segment -= winsize
                    bac_list = []

        if imagemap and excess > 0:
            bac_list.append(b.accn)
            segment_end = end
            tlx, tly, brx, bry = xx, (1 - ystart) + segment_start * ratio, \
                          xx + xwidth, (1 - ystart) + segment_end * ratio
            print >> mapfh, '\t' + write_ImageMapLine(tlx, tly, brx, bry, \
                    w, h, dpi, chr+":"+",".join(bac_list), segment_start, segment_end)

    if imagemap:
        print >> mapfh, '</map>'
        mapfh.close()
        logging.debug("Image map written to `{0}`".format(mapfh.name))

    if opts.gauge:
        xstart, ystart = .9, .85
        Gauge(root, xstart, ystart - r, ystart, max_chr_len)

    # class legends, four in a row
    xstart = .1
    xinterval = .2
    xwidth = .04
    yy = .08
    for klass, cc in sorted(class_colors.items()):
        if klass == '-':
            continue
        root.add_patch(
            Rectangle((xstart, yy), xwidth, xwidth, fc=cc, lw=0, alpha=alpha))
        root.text(xstart + xwidth + .01, yy, klass, fontsize=10)
        xstart += xinterval

    empty = opts.empty
    if empty:
        root.add_patch(
            Rectangle((xstart, yy), xwidth, xwidth, fill=False, lw=1))
        root.text(xstart + xwidth + .01, yy, empty, fontsize=10)

    root.text(.5,
              .95,
              opts.title,
              fontstyle="italic",
              ha="center",
              va="center")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    savefig(figname, dpi=dpi, iopts=iopts)
Example #27
0
 def update_from(self, filename):
     from jcvi.formats.base import DictFile
     d = DictFile(filename)
     for k, v in d.items():
         self[k].append(v)
Example #28
0
def summary(args):
    """
    %prog summary diploid.napus.fractionation gmap.status

    Provide summary of fractionation. `fractionation` file is generated with
    loss(). `gmap.status` is generated with genestatus().
    """
    from jcvi.formats.base import DictFile
    from jcvi.utils.cbook import percentage, Registry

    p = OptionParser(summary.__doc__)
    p.add_option("--extra",
                 help="Cross with extra tsv file [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    frfile, statusfile = args
    status = DictFile(statusfile)
    fp = open(frfile)
    registry = Registry()  # keeps all the tags for any given gene
    for row in fp:
        seqid, gene, tag = row.split()
        if tag == '.':
            registry[gene].append("outside")
        else:
            registry[gene].append("inside")
            if tag[0] == '[':
                registry[gene].append("no_syntenic_model")
                if tag.startswith("[S]"):
                    registry[gene].append("[S]")
                    gstatus = status.get(gene, None)
                    if gstatus == 'complete':
                        registry[gene].append("complete")
                    elif gstatus == 'pseudogene':
                        registry[gene].append("pseudogene")
                    elif gstatus == 'partial':
                        registry[gene].append("partial")
                    else:
                        registry[gene].append("gmap_fail")
                elif tag.startswith("[NS]"):
                    registry[gene].append("[NS]")
                    if "random" in tag or "Scaffold" in tag:
                        registry[gene].append("random")
                    else:
                        registry[gene].append("real_ns")
                elif tag.startswith("[NF]"):
                    registry[gene].append("[NF]")
            else:
                registry[gene].append("syntenic_model")

    inside = registry.count("inside")
    outside = registry.count("outside")
    syntenic = registry.count("syntenic_model")
    non_syntenic = registry.count("no_syntenic_model")
    s = registry.count("[S]")
    ns = registry.count("[NS]")
    nf = registry.count("[NF]")
    complete = registry.count("complete")
    pseudogene = registry.count("pseudogene")
    partial = registry.count("partial")
    gmap_fail = registry.count("gmap_fail")
    random = registry.count("random")
    real_ns = registry.count("real_ns")

    complete_models = registry.get_tag("complete")
    pseudogenes = registry.get_tag("pseudogene")
    partial_deletions = registry.get_tag("partial")

    m = "{0} inside synteny blocks\n".format(inside)
    m += "{0} outside synteny blocks\n".format(outside)
    m += "{0} has syntenic gene\n".format(syntenic)
    m += "{0} lack syntenic gene\n".format(non_syntenic)
    m += "{0} has sequence match in syntenic location\n".format(s)
    m += "{0} has sequence match in non-syntenic location\n".format(ns)
    m += "{0} has sequence match in un-ordered scaffolds\n".format(random)
    m += "{0} has sequence match in real non-syntenic location\n".format(
        real_ns)
    m += "{0} has no sequence match\n".format(nf)
    m += "{0} syntenic sequence - complete model\n".format(
        percentage(complete, s))
    m += "{0} syntenic sequence - partial model\n".format(
        percentage(partial, s))
    m += "{0} syntenic sequence - pseudogene\n".format(
        percentage(pseudogene, s))
    m += "{0} syntenic sequence - gmap fail\n".format(percentage(gmap_fail, s))
    print >> sys.stderr, m

    aa = ["complete_models", "partial_deletions", "pseudogenes"]
    bb = [complete_models, partial_deletions, pseudogenes]
    for a, b in zip(aa, bb):
        fw = open(a, "w")
        print >> fw, "\n".join(b)
        fw.close()

    extra = opts.extra
    if extra:
        registry.update_from(extra)

    fp.seek(0)
    fw = open("registry", "w")
    for row in fp:
        seqid, gene, tag = row.split()
        ts = registry[gene]
        print >> fw, "\t".join((seqid, gene, tag, "-".join(ts)))
    fw.close()

    logging.debug("Registry written.")
Example #29
0
def genestats(args):
    """
    %prog genestats gffile

    Print summary stats, including:
    - Number of genes
    - Number of single-exon genes
    - Number of multi-exon genes
    - Number of distinct exons
    - Number of genes with alternative transcript variants
    - Number of predicted transcripts
    - Mean number of distinct exons per gene
    - Mean number of transcripts per gene
    - Mean gene locus size (first to last exon)
    - Mean transcript size (UTR, CDS)
    - Mean exon size

    Stats modeled after barley genome paper Table 1.
    A physical, genetic and functional sequence assembly of the barley genome
    """
    p = OptionParser(genestats.__doc__)
    p.add_option("--groupby", default="conf_class",
                 help="Print separate stats groupby")
    opts, args = p.parse_args(args)

    if len(args) != 1:
        sys.exit(not p.print_help())

    gff_file, = args
    gb = opts.groupby
    g = make_index(gff_file)

    tf = "transcript.sizes"
    if need_update(gff_file, tf):
        fw = open(tf, "w")
        for feat in g.features_of_type("mRNA"):
            fid = feat.id
            conf_class = feat.attributes.get(gb, "all")
            tsize = sum((c.stop - c.start + 1) for c in g.children(fid, 1) \
                             if c.featuretype == "exon")
            print >> fw, "\t".join((fid, str(tsize), conf_class))
        fw.close()

    tsizes = DictFile(tf, cast=int)
    conf_classes = DictFile(tf, valuepos=2)
    logging.debug("A total of {0} transcripts populated.".format(len(tsizes)))

    genes = []
    for feat in g.features_of_type("gene"):
        fid = feat.id
        transcripts = [c.id for c in g.children(fid, 1) \
                         if c.featuretype == "mRNA"]
        transcript_sizes = [tsizes[x] for x in transcripts]
        exons = set((c.chrom, c.start, c.stop) for c in g.children(fid, 2) \
                         if c.featuretype == "exon")
        conf_class = conf_classes[transcripts[0]]
        gs = GeneStats(feat, conf_class, transcript_sizes, exons)
        genes.append(gs)

    r = {}  # Report
    distinct_groups = set(conf_classes.values())
    for g in distinct_groups:
        num_genes = num_single_exon_genes = num_multi_exon_genes = 0
        num_genes_with_alts = num_transcripts = num_exons = 0
        cum_locus_size = cum_transcript_size = cum_exon_size = 0
        for gs in genes:
            if gs.conf_class != g:
                continue
            num_genes += 1
            if gs.num_exons == 1:
                num_single_exon_genes += 1
            else:
                num_multi_exon_genes += 1
            num_exons += gs.num_exons
            if gs.num_transcripts > 1:
                num_genes_with_alts += 1
            num_transcripts += gs.num_transcripts
            cum_locus_size += gs.locus_size
            cum_transcript_size += gs.cum_transcript_size
            cum_exon_size += gs.cum_exon_size

        mean_num_exons = num_exons * 1. / num_genes
        mean_num_transcripts = num_transcripts * 1. / num_genes
        mean_locus_size = cum_locus_size * 1. / num_genes
        mean_transcript_size = cum_transcript_size * 1. / num_transcripts
        mean_exon_size = cum_exon_size * 1. / num_exons

        r[("Number of genes", g)] = num_genes
        r[("Number of single-exon genes", g)] = \
            percentage(num_single_exon_genes, num_genes, mode=1)
        r[("Number of multi-exon genes", g)] = \
            percentage(num_multi_exon_genes, num_genes, mode=1)
        r[("Number of distinct exons", g)] = num_exons
        r[("Number of genes with alternative transcript variants", g)] = \
            percentage(num_genes_with_alts, num_genes, mode=1)
        r[("Number of predicted transcripts", g)] = num_transcripts
        r[("Mean number of distinct exons per gene", g)] = mean_num_exons
        r[("Mean number of transcripts per gene", g)] = mean_num_transcripts
        r[("Mean gene locus size (first to last exon)", g)] = mean_locus_size
        r[("Mean transcript size (UTR, CDS)", g)] = mean_transcript_size
        r[("Mean exon size", g)] = mean_exon_size

    print >> sys.stderr, tabulate(r)
Example #30
0
    def __init__(self,
                 fig,
                 root,
                 datafile,
                 bedfile,
                 layoutfile,
                 switch=None,
                 tree=None,
                 extra_features=None,
                 chr_label=True,
                 loc_label=True,
                 pad=.04):

        w, h = fig.get_figwidth(), fig.get_figheight()
        bed = Bed(bedfile)
        order = bed.order
        bf = BlockFile(datafile)
        self.layout = lo = Layout(layoutfile)
        switch = DictFile(switch, delimiter="\t") if switch else None
        if extra_features:
            extra_features = Bed(extra_features)

        exts = []
        extras = []
        for i in xrange(bf.ncols):
            ext = bf.get_extent(i, order)
            exts.append(ext)
            if extra_features:
                start, end, si, ei, chr, orientation, span = ext
                start, end = start.start, end.end  # start, end coordinates
                ef = list(extra_features.extract(chr, start, end))

                # Pruning removes minor features with < 0.1% of the region
                ef_pruned = [x for x in ef if x.span >= span / 1000]
                print >> sys.stderr, "Extracted {0} features "\
                        "({1} after pruning)".format(len(ef), len(ef_pruned))
                extras.append(ef_pruned)

        maxspan = max(exts, key=lambda x: x[-1])[-1]
        scale = maxspan / .65

        self.gg = gg = {}
        self.rr = []
        ymids = []
        vpad = .012 * w / h
        for i in xrange(bf.ncols):
            ext = exts[i]
            ef = extras[i] if extras else None
            r = Region(root,
                       ext,
                       lo[i],
                       bed,
                       scale,
                       switch,
                       chr_label=chr_label,
                       loc_label=loc_label,
                       vpad=vpad,
                       extra_features=ef)
            self.rr.append(r)
            # Use tid and accn to store gene positions
            gg.update(dict(((i, k), v) for k, v in r.gg.items()))
            ymids.append(r.y)

        for i, j in lo.edges:
            for ga, gb, h in bf.iter_pairs(i, j):
                a, b = gg[(i, ga)], gg[(j, gb)]
                ymid = (ymids[i] + ymids[j]) / 2
                Shade(root, a, b, ymid, fc="gainsboro", lw=0, alpha=1)

            for ga, gb, h in bf.iter_pairs(i, j, highlight=True):
                a, b = gg[(i, ga)], gg[(j, gb)]
                ymid = (ymids[i] + ymids[j]) / 2
                Shade(root, a, b, ymid, alpha=1, highlight=h, zorder=2)

        if tree:
            from jcvi.graphics.tree import draw_tree, read_trees

            trees = read_trees(tree)
            ntrees = len(trees)
            logging.debug("A total of {0} trees imported.".format(ntrees))
            xiv = 1. / ntrees
            yiv = .3
            xstart = 0
            ystart = min(ymids) - .4
            for i in xrange(ntrees):
                ax = fig.add_axes([xstart, ystart, xiv, yiv])
                label, outgroup, tx = trees[i]
                draw_tree(ax, tx, outgroup=outgroup, rmargin=.4, leaffont=11)
                xstart += xiv
                RoundLabel(ax,
                           .5,
                           .3,
                           label,
                           fill=True,
                           fc="lavender",
                           color="r")
Example #31
0
def omgprepare(args):
    """
    %prog omgprepare ploidy anchorsfile blastfile

    Prepare to run Sankoff's OMG algorithm to get orthologs.
    """
    from jcvi.formats.blast import cscore
    from jcvi.formats.base import DictFile

    p = OptionParser(omgprepare.__doc__)
    p.add_option("--norbh",
                 action="store_true",
                 help="Disable RBH hits [default: %default]")
    p.add_option("--pctid",
                 default=0,
                 type="int",
                 help="Percent id cutoff for RBH hits [default: %default]")
    p.add_option("--cscore",
                 default=90,
                 type="int",
                 help="C-score cutoff for RBH hits [default: %default]")
    p.set_stripnames()
    p.set_beds()

    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    ploidy, anchorfile, blastfile = args
    norbh = opts.norbh
    pctid = opts.pctid
    cs = opts.cscore
    qbed, sbed, qorder, sorder, is_self = check_beds(anchorfile, p, opts)

    fp = open(ploidy)
    genomeidx = dict((x.split()[0], i) for i, x in enumerate(fp))
    fp.close()

    ploidy = DictFile(ploidy)

    geneinfo(qbed, qorder, genomeidx, ploidy)
    geneinfo(sbed, sorder, genomeidx, ploidy)

    pf = blastfile.rsplit(".", 1)[0]
    cscorefile = pf + ".cscore"
    cscore([blastfile, "-o", cscorefile, "--cutoff=0", "--pct"])
    ac = AnchorFile(anchorfile)
    pairs = set((a, b) for a, b, i in ac.iter_pairs())
    logging.debug("Imported {0} pairs from `{1}`.".format(
        len(pairs), anchorfile))

    weightsfile = pf + ".weights"
    fp = open(cscorefile)
    fw = open(weightsfile, "w")
    npairs = 0
    for row in fp:
        a, b, c, pct = row.split()
        c, pct = float(c), float(pct)
        c = int(c * 100)
        if (a, b) not in pairs:
            if norbh:
                continue
            if c < cs:
                continue
            if pct < pctid:
                continue
            c /= 10  # This severely penalizes RBH against synteny

        print >> fw, "\t".join((a, b, str(c)))
        npairs += 1
    fw.close()

    logging.debug("Write {0} pairs to `{1}`.".format(npairs, weightsfile))
Example #32
0
def draw_tree(ax,
              tx,
              rmargin=.3,
              treecolor="k",
              leafcolor="k",
              supportcolor="k",
              outgroup=None,
              reroot=True,
              gffdir=None,
              sizes=None,
              trunc_name=None,
              SH=None,
              scutoff=0,
              barcodefile=None,
              leafcolorfile=None,
              leaffont=12):
    """
    main function for drawing phylogenetic tree
    """

    t = Tree(tx)
    if reroot:
        if outgroup:
            R = t.get_common_ancestor(*outgroup)
        else:
            # Calculate the midpoint node
            R = t.get_midpoint_outgroup()

        if R != t:
            t.set_outgroup(R)

    farthest, max_dist = t.get_farthest_leaf()

    margin = .05
    xstart = margin
    ystart = 1 - margin
    canvas = 1 - rmargin - 2 * margin
    tip = .005
    # scale the tree
    scale = canvas / max_dist

    num_leaves = len(t.get_leaf_names())
    yinterval = canvas / (num_leaves + 1)

    # get exons structures, if any
    structures = {}
    if gffdir:
        gffiles = glob("{0}/*.gff*".format(gffdir))
        setups, ratio = get_setups(gffiles, canvas=rmargin / 2, noUTR=True)
        structures = dict((a, (b, c)) for a, b, c in setups)

    if sizes:
        sizes = Sizes(sizes).mapping

    if barcodefile:
        barcodemap = DictFile(barcodefile, delimiter="\t")

    if leafcolorfile:
        leafcolors = DictFile(leafcolorfile, delimiter="\t")

    coords = {}
    i = 0
    for n in t.traverse("postorder"):
        dist = n.get_distance(t)
        xx = xstart + scale * dist

        if n.is_leaf():
            yy = ystart - i * yinterval
            i += 1

            if trunc_name:
                name = truncate_name(n.name, rule=trunc_name)
            else:
                name = n.name

            if barcodefile:
                name = decode_name(name, barcodemap)

            sname = name.replace("_", "-")

            try:
                lc = leafcolors[n.name]
            except Exception:
                lc = leafcolor
            else:
                # if color is given as "R,G,B"
                if "," in lc:
                    lc = map(float, lc.split(","))

            ax.text(xx + tip,
                    yy,
                    sname,
                    va="center",
                    fontstyle="italic",
                    size=leaffont,
                    color=lc)

            gname = n.name.split("_")[0]
            if gname in structures:
                mrnabed, cdsbeds = structures[gname]
                ExonGlyph(ax,
                          1 - rmargin / 2,
                          yy,
                          mrnabed,
                          cdsbeds,
                          align="right",
                          ratio=ratio)
            if sizes and gname in sizes:
                size = sizes[gname]
                size = size / 3 - 1  # base pair converted to amino acid
                size = "{0}aa".format(size)
                ax.text(1 - rmargin / 2 + tip, yy, size, size=leaffont)

        else:
            children = [coords[x] for x in n.get_children()]
            children_x, children_y = zip(*children)
            min_y, max_y = min(children_y), max(children_y)
            # plot the vertical bar
            ax.plot((xx, xx), (min_y, max_y), "-", color=treecolor)
            # plot the horizontal bar
            for cx, cy in children:
                ax.plot((xx, cx), (cy, cy), "-", color=treecolor)
            yy = sum(children_y) * 1. / len(children_y)
            support = n.support
            if support > 1:
                support = support / 100.
            if not n.is_root():
                if support > scutoff / 100.:
                    ax.text(xx,
                            yy + .005,
                            "{0:d}".format(int(abs(support * 100))),
                            ha="right",
                            size=leaffont,
                            color=supportcolor)

        coords[n] = (xx, yy)

    # scale bar
    br = .1
    x1 = xstart + .1
    x2 = x1 + br * scale
    yy = ystart - i * yinterval
    ax.plot([x1, x1], [yy - tip, yy + tip], "-", color=treecolor)
    ax.plot([x2, x2], [yy - tip, yy + tip], "-", color=treecolor)
    ax.plot([x1, x2], [yy, yy], "-", color=treecolor)
    ax.text((x1 + x2) / 2,
            yy - tip,
            "{0:g}".format(br),
            va="top",
            ha="center",
            size=leaffont,
            color=treecolor)

    if SH is not None:
        xs = x1
        ys = (margin + yy) / 2.
        ax.text(xs,
                ys,
                "SH test against ref tree: {0}".format(SH),
                ha="left",
                size=leaffont,
                color="g")

    normalize_axes(ax)
Example #33
0
def get_hg38_chromsizes(filename=datafile("hg38.chrom.sizes")):
    chromsizes = DictFile(filename)
    chromsizes = dict((k, int(v)) for k, v in chromsizes.items())
    return chromsizes
Example #34
0
def main():
    """
    %prog bedfile id_mappings

    Takes a bedfile that contains the coordinates of features to plot on the
    chromosomes, and `id_mappings` file that map the ids to certain class. Each
    class will get assigned a unique color. `id_mappings` file is optional (if
    omitted, will not paint the chromosome features, except the centromere).
    """
    p = OptionParser(main.__doc__)
    p.add_option("--title", default="Medicago truncatula v3.5",
            help="title of the image [default: `%default`]")
    p.add_option("--gauge", default=False, action="store_true",
            help="draw a gauge with size label [default: %default]")
    p.add_option("--imagemap", default=False, action="store_true",
            help="generate an HTML image map associated with the image [default: %default]")
    p.add_option("--winsize", default=50000, type="int",
            help="if drawing an imagemap, specify the window size (bases) of each map element "
                 "[default: %default bp]")
    p.add_option("--empty", help="Write legend for unpainted region")
    opts, args, iopts = p.set_image_options(figsize="6x6", dpi=300)

    if len(args) not in (1, 2):
        sys.exit(p.print_help())

    bedfile = args[0]
    mappingfile = None
    if len(args) == 2:
        mappingfile = args[1]

    winsize = opts.winsize
    imagemap = opts.imagemap
    w, h = iopts.w, iopts.h
    dpi = iopts.dpi

    prefix = bedfile.rsplit(".", 1)[0]
    figname = prefix + "." + opts.format
    if imagemap:
        imgmapfile = prefix + '.map'
        mapfh = open(imgmapfile, "w")
        print >> mapfh, '<map id="' + prefix + '">'

    if mappingfile:
        mappings = DictFile(mappingfile, delimiter="\t")
        classes = sorted(set(mappings.values()))
        logging.debug("A total of {0} classes found: {1}".format(len(classes),
            ','.join(classes)))
    else:
        mappings = {}
        classes = []
        logging.debug("No classes registered (no id_mappings given).")

    mycolors = "rgbymc"
    class_colors = dict(zip(classes, mycolors))

    bed = Bed(bedfile)
    chr_lens = {}
    centromeres = {}
    for b, blines in groupby(bed, key=(lambda x: x.seqid)):
        blines = list(blines)
        maxlen = max(x.end for x in blines)
        chr_lens[b] = maxlen

    for b in bed:
        accn = b.accn
        if accn == "centromere":
            centromeres[b.seqid] = b.start
        if accn in mappings:
            b.accn = mappings[accn]
        else:
            b.accn = '-'

    chr_number = len(chr_lens)
    if centromeres:
        assert chr_number == len(centromeres)

    fig = plt.figure(1, (w, h))
    root = fig.add_axes([0, 0, 1, 1])

    r = .7  # width and height of the whole chromosome set
    xstart, ystart = .15, .85
    xinterval = r / chr_number
    xwidth = xinterval * .5  # chromosome width
    max_chr_len = max(chr_lens.values())
    ratio = r / max_chr_len  # canvas / base

    # first the chromosomes
    for a, (chr, clen) in enumerate(sorted(chr_lens.items())):
        xx = xstart + a * xinterval + .5 * xwidth
        root.text(xx, ystart + .01, chr, ha="center")
        if centromeres:
            yy = ystart - centromeres[chr] * ratio
            ChromosomeWithCentromere(root, xx, ystart, yy,
                    ystart - clen * ratio, width=xwidth)
        else:
            Chromosome(root, xx, ystart, ystart - clen * ratio, width=xwidth)

    chr_idxs = dict((a, i) for i, a in enumerate(sorted(chr_lens.keys())))

    alpha = .75
    # color the regions
    for chr in sorted(chr_lens.keys()):
        segment_size, excess = 0, 0
        bac_list = []
        for b in bed.sub_bed(chr):
            clen = chr_lens[chr]
            idx = chr_idxs[chr]
            klass = b.accn
            start = b.start
            end = b.end
            xx = xstart + idx * xinterval
            yystart = ystart - end * ratio
            yyend = ystart - start * ratio
            root.add_patch(Rectangle((xx, yystart), xwidth, yyend - yystart,
                fc=class_colors.get(klass, "w"), lw=0, alpha=alpha))

            if imagemap:
                """
                `segment` : size of current BAC being investigated + `excess`
                `excess`  : left-over bases from the previous BAC, as a result of
                            iterating over `winsize` regions of `segment`
                """
                if excess == 0:
                    segment_start = start
                segment = (end - start + 1) + excess
                while True:
                    if segment < winsize:
                        bac_list.append(b.accn)
                        excess = segment
                        break
                    segment_end = segment_start + winsize - 1
                    tlx, tly, brx, bry = xx, (1 - ystart) + segment_start * ratio, \
                                  xx + xwidth, (1 - ystart) + segment_end * ratio
                    print >> mapfh, '\t' + write_ImageMapLine(tlx, tly, brx, bry, \
                            w, h, dpi, chr+":"+",".join(bac_list), segment_start, segment_end)

                    segment_start += winsize
                    segment -= winsize
                    bac_list = []

        if imagemap and excess > 0:
            bac_list.append(b.accn)
            segment_end = end
            tlx, tly, brx, bry = xx, (1 - ystart) + segment_start * ratio, \
                          xx + xwidth, (1 - ystart) + segment_end * ratio
            print >> mapfh, '\t' + write_ImageMapLine(tlx, tly, brx, bry, \
                    w, h, dpi, chr+":"+",".join(bac_list), segment_start, segment_end)

    if imagemap:
        print >> mapfh, '</map>'
        mapfh.close()
        logging.debug("Image map written to `{0}`".format(mapfh.name))

    if opts.gauge:
        xstart, ystart = .9, .85
        Gauge(root, xstart, ystart - r, ystart, max_chr_len)

    # class legends, four in a row
    xstart = .1
    xinterval = .2
    xwidth = .04
    yy = .08
    for klass, cc in sorted(class_colors.items()):
        if klass == '-':
            continue
        root.add_patch(Rectangle((xstart, yy), xwidth, xwidth, fc=cc, lw=0,
            alpha=alpha))
        root.text(xstart + xwidth + .01, yy, klass, fontsize=10)
        xstart += xinterval

    empty = opts.empty
    if empty:
        root.add_patch(Rectangle((xstart, yy), xwidth, xwidth, fill=False, lw=1))
        root.text(xstart + xwidth + .01, yy, empty, fontsize=10)

    root.text(.5, .95, opts.title, fontstyle="italic", ha="center", va="center")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    savefig(figname, dpi=dpi, iopts=iopts)
Example #35
0
def htg(args):
    """
    %prog htg fastafile template.sbt

    Prepare sqnfiles for Genbank HTG submission to update existing records.

    `fastafile` contains the records to update, multiple records are allowed
    (with each one generating separate sqn file in the sqn/ folder). The record
    defline has the accession ID. For example,
    >AC148290.3

    Internally, this generates two additional files (phasefile and namesfile)
    and download records from Genbank. Below is implementation details:

    `phasefile` contains, for each accession, phase information. For example:
    AC148290.3      3       HTG     2       mth2-45h12

    which means this is a Phase-3 BAC. Record with only a single contig will be
    labeled as Phase-3 regardless of the info in the `phasefile`. Template file
    is the Genbank sbt template. See jcvi.formats.sbt for generation of such
    files.

    Another problem is that Genbank requires the name of the sequence to stay
    the same when updating and will kick back with a table of name conflicts.
    For example:

    We are unable to process the updates for these entries
    for the following reason:

    Seqname has changed

    Accession Old seq_name New seq_name
    --------- ------------ ------------
    AC239792 mtg2_29457 AC239792.1

    To prepare a submission, this script downloads genbank and asn.1 format,
    and generate the phase file and the names file (use formats.agp.phase() and
    apps.gbsubmit.asn(), respectively). These get automatically run.

    However, use --phases if the genbank files contain outdated information.
    For example, the clone name changes or phase upgrades. In this case, run
    formats.agp.phase() manually, modify the phasefile and use --phases to override.
    """
    from jcvi.formats.fasta import sequin, ids
    from jcvi.formats.agp import phase
    from jcvi.apps.fetch import entrez

    p = OptionParser(htg.__doc__)
    p.add_option("--phases", default=None,
            help="Use another phasefile to override [default: %default]")
    p.add_option("--comment", default="",
            help="Comments for this update [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    fastafile, sbtfile = args
    pf = fastafile.rsplit(".", 1)[0]

    idsfile = pf + ".ids"
    phasefile = pf + ".phases"
    namesfile = pf + ".names"

    ids([fastafile, "--outfile={0}".format(idsfile)])

    asndir = "asn.1"
    mkdir(asndir)
    entrez([idsfile, "--format=asn.1", "--outdir={0}".format(asndir)])
    asn(glob("{0}/*".format(asndir)) + \
            ["--outfile={0}".format(namesfile)])

    if opts.phases is None:
        gbdir = "gb"
        mkdir(gbdir)
        entrez([idsfile, "--format=gb", "--outdir={0}".format(gbdir)])
        phase(glob("{0}/*".format(gbdir)) + \
                ["--outfile={0}".format(phasefile)])
    else:
        phasefile = opts.phases

    assert op.exists(namesfile) and op.exists(phasefile)

    newphasefile = phasefile + ".new"
    newphasefw = open(newphasefile, "w")
    comment = opts.comment

    fastadir = "fasta"
    sqndir = "sqn"
    mkdir(fastadir)
    mkdir(sqndir)

    from jcvi.graphics.histogram import stem_leaf_plot

    names = DictFile(namesfile)
    assert len(set(names.keys())) == len(set(names.values()))

    phases = DictFile(phasefile)
    ph = [int(x) for x in phases.values()]
    # vmin 1, vmax 4, bins 3
    stem_leaf_plot(ph, 1, 4, 3, title="Counts of phases before updates")
    logging.debug("Information loaded for {0} records.".format(len(phases)))
    assert len(names) == len(phases)

    newph = []

    cmd = "faSplit byname {0} {1}/".format(fastafile, fastadir)
    sh(cmd, outfile="/dev/null", errfile="/dev/null")

    acmd = 'tbl2asn -a z -p fasta -r {sqndir}'
    acmd += ' -i {splitfile} -t {sbtfile} -C tigr'
    acmd += ' -j "{qualifiers}"'
    acmd += ' -A {accession_nv} -o {sqndir}/{accession_nv}.sqn -V Vbr'
    acmd += ' -y "{comment}" -W T -T T'

    qq = "[tech=htgs {phase}] [organism=Medicago truncatula] [strain=A17]"

    nupdated = 0
    for row in open(phasefile):
        atoms = row.rstrip().split("\t")
        # see formats.agp.phase() for column contents
        accession, phase, clone = atoms[0], atoms[1], atoms[-1]
        fafile = op.join(fastadir, accession + ".fa")
        accession_nv = accession.split(".", 1)[0]

        newid = names[accession_nv]
        newidopt = "--newid={0}".format(newid)
        cloneopt = "--clone={0}".format(clone)
        splitfile, gaps = sequin([fafile, newidopt, cloneopt])
        splitfile = op.basename(splitfile)
        phase = int(phase)
        assert phase in (1, 2, 3)

        oldphase = phase
        if gaps == 0 and phase != 3:
            phase = 3

        if gaps != 0 and phase == 3:
            phase = 2

        print("{0}\t{1}\t{2}".\
                format(accession_nv, oldphase, phase), file=newphasefw)
        newph.append(phase)

        qualifiers = qq.format(phase=phase)
        if ";" in clone:
            qualifiers += " [keyword=HTGS_POOLED_MULTICLONE]"

        cmd = acmd.format(accession=accession, accession_nv=accession_nv,
                sqndir=sqndir, sbtfile=sbtfile, splitfile=splitfile,
                qualifiers=qualifiers, comment=comment)
        sh(cmd)

        verify_sqn(sqndir, accession)
        nupdated += 1

    stem_leaf_plot(newph, 1, 4, 3, title="Counts of phases after updates")
    print("A total of {0} records updated.".format(nupdated), file=sys.stderr)
Example #36
0
def merge(args):
    """
    %prog merge protein-quartets registry LOST

    Merge protein quartets table with dna quartets registry. This is specific
    to the napus project.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(merge.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    quartets, registry, lost = args
    qq = DictFile(registry, keypos=1, valuepos=3)
    lost = DictFile(lost, keypos=1, valuepos=0, delimiter='|')
    qq.update(lost)
    fp = open(quartets)
    cases = {
        "AN,CN": 4,
        "BO,AN,CN": 8,
        "BO,CN": 2,
        "BR,AN": 1,
        "BR,AN,CN": 6,
        "BR,BO": 3,
        "BR,BO,AN": 5,
        "BR,BO,AN,CN": 9,
        "BR,BO,CN": 7,
    }
    ip = {
        "syntenic_model": "Syntenic_model_excluded_by_OMG",
        "complete": "Predictable",
        "partial": "Truncated",
        "pseudogene": "Pseudogene",
        "random": "Match_random",
        "real_ns": "Transposed",
        "gmap_fail": "GMAP_fail",
        "AN LOST": "AN_LOST",
        "CN LOST": "CN_LOST",
        "BR LOST": "BR_LOST",
        "BO LOST": "BO_LOST",
        "outside": "Outside_synteny_blocks",
        "[NF]": "Not_found",
    }
    for row in fp:
        atoms = row.strip().split("\t")
        genes = atoms[:4]
        tag = atoms[4]
        a, b, c, d = [qq.get(x, ".").rsplit("-", 1)[-1] for x in genes]
        qqs = [c, d, a, b]
        for i, q in enumerate(qqs):
            if atoms[i] != '.':
                qqs[i] = "syntenic_model"
        # Make comment
        comment = "Case{0}".format(cases[tag])
        dots = sum([1 for x in genes if x == '.'])
        if dots == 1:
            idx = genes.index(".")
            status = qqs[idx]
            status = ip[status]
            comment += "-" + status
        print row.strip() + "\t" + "\t".join(qqs + [comment])
Example #37
0
def htg(args):
    """
    %prog htg fastafile template.sbt

    Prepare sqnfiles for Genbank HTG submission to update existing records.

    `fastafile` contains the records to update, multiple records are allowed
    (with each one generating separate sqn file in the sqn/ folder). The record
    defline has the accession ID. For example,
    >AC148290.3

    Internally, this generates two additional files (phasefile and namesfile)
    and download records from Genbank. Below is implementation details:

    `phasefile` contains, for each accession, phase information. For example:
    AC148290.3      3       HTG     2       mth2-45h12

    which means this is a Phase-3 BAC. Record with only a single contig will be
    labeled as Phase-3 regardless of the info in the `phasefile`. Template file
    is the Genbank sbt template. See jcvi.formats.sbt for generation of such
    files.

    Another problem is that Genbank requires the name of the sequence to stay
    the same when updating and will kick back with a table of name conflicts.
    For example:

    We are unable to process the updates for these entries
    for the following reason:

    Seqname has changed

    Accession Old seq_name New seq_name
    --------- ------------ ------------
    AC239792 mtg2_29457 AC239792.1

    To prepare a submission, this script downloads genbank and asn.1 format,
    and generate the phase file and the names file (use formats.agp.phase() and
    apps.gbsubmit.asn(), respectively). These get automatically run.

    However, use --phases if the genbank files contain outdated information.
    For example, the clone name changes or phase upgrades. In this case, run
    formats.agp.phase() manually, modify the phasefile and use --phases to override.
    """
    from jcvi.formats.fasta import sequin, ids
    from jcvi.formats.agp import phase
    from jcvi.apps.fetch import entrez

    p = OptionParser(htg.__doc__)
    p.add_option(
        "--phases",
        default=None,
        help="Use another phasefile to override",
    )
    p.add_option("--comment", default="", help="Comments for this update")
    opts, args = p.parse_args(args)

    if len(args) != 2:
        sys.exit(not p.print_help())

    fastafile, sbtfile = args
    pf = fastafile.rsplit(".", 1)[0]

    idsfile = pf + ".ids"
    phasefile = pf + ".phases"
    namesfile = pf + ".names"

    ids([fastafile, "--outfile={0}".format(idsfile)])

    asndir = "asn.1"
    mkdir(asndir)
    entrez([idsfile, "--format=asn.1", "--outdir={0}".format(asndir)])
    asn(glob("{0}/*".format(asndir)) + ["--outfile={0}".format(namesfile)])

    if opts.phases is None:
        gbdir = "gb"
        mkdir(gbdir)
        entrez([idsfile, "--format=gb", "--outdir={0}".format(gbdir)])
        phase(
            glob("{0}/*".format(gbdir)) + ["--outfile={0}".format(phasefile)])
    else:
        phasefile = opts.phases

    assert op.exists(namesfile) and op.exists(phasefile)

    newphasefile = phasefile + ".new"
    newphasefw = open(newphasefile, "w")
    comment = opts.comment

    fastadir = "fasta"
    sqndir = "sqn"
    mkdir(fastadir)
    mkdir(sqndir)

    from jcvi.graphics.histogram import stem_leaf_plot

    names = DictFile(namesfile)
    assert len(set(names.keys())) == len(set(names.values()))

    phases = DictFile(phasefile)
    ph = [int(x) for x in phases.values()]
    # vmin 1, vmax 4, bins 3
    stem_leaf_plot(ph, 1, 4, 3, title="Counts of phases before updates")
    logging.debug("Information loaded for {0} records.".format(len(phases)))
    assert len(names) == len(phases)

    newph = []

    cmd = "faSplit byname {0} {1}/".format(fastafile, fastadir)
    sh(cmd, outfile="/dev/null", errfile="/dev/null")

    acmd = "tbl2asn -a z -p fasta -r {sqndir}"
    acmd += " -i {splitfile} -t {sbtfile} -C tigr"
    acmd += ' -j "{qualifiers}"'
    acmd += " -A {accession_nv} -o {sqndir}/{accession_nv}.sqn -V Vbr"
    acmd += ' -y "{comment}" -W T -T T'

    qq = "[tech=htgs {phase}] [organism=Medicago truncatula] [strain=A17]"

    nupdated = 0
    for row in open(phasefile):
        atoms = row.rstrip().split("\t")
        # see formats.agp.phase() for column contents
        accession, phase, clone = atoms[0], atoms[1], atoms[-1]
        fafile = op.join(fastadir, accession + ".fa")
        accession_nv = accession.split(".", 1)[0]

        newid = names[accession_nv]
        newidopt = "--newid={0}".format(newid)
        cloneopt = "--clone={0}".format(clone)
        splitfile, gaps = sequin([fafile, newidopt, cloneopt])
        splitfile = op.basename(splitfile)
        phase = int(phase)
        assert phase in (1, 2, 3)

        oldphase = phase
        if gaps == 0 and phase != 3:
            phase = 3

        if gaps != 0 and phase == 3:
            phase = 2

        print("{0}\t{1}\t{2}".format(accession_nv, oldphase, phase),
              file=newphasefw)
        newph.append(phase)

        qualifiers = qq.format(phase=phase)
        if ";" in clone:
            qualifiers += " [keyword=HTGS_POOLED_MULTICLONE]"

        cmd = acmd.format(
            accession=accession,
            accession_nv=accession_nv,
            sqndir=sqndir,
            sbtfile=sbtfile,
            splitfile=splitfile,
            qualifiers=qualifiers,
            comment=comment,
        )
        sh(cmd)

        verify_sqn(sqndir, accession)
        nupdated += 1

    stem_leaf_plot(newph, 1, 4, 3, title="Counts of phases after updates")
    print("A total of {0} records updated.".format(nupdated), file=sys.stderr)
Example #38
0
def covlen(args):
    """
    %prog covlen covfile fastafile

    Plot coverage vs length. `covfile` is two-column listing contig id and
    depth of coverage.
    """
    import numpy as np
    import pandas as pd
    import seaborn as sns
    from jcvi.formats.base import DictFile

    p = OptionParser(covlen.__doc__)
    p.add_option("--maxsize",
                 default=1000000,
                 type="int",
                 help="Max contig size")
    p.add_option("--maxcov", default=100, type="int", help="Max contig size")
    p.add_option("--color", default='m', help="Color of the data points")
    p.add_option("--kind",
                 default="scatter",
                 choices=("scatter", "reg", "resid", "kde", "hex"),
                 help="Kind of plot to draw")
    opts, args, iopts = p.set_image_options(args, figsize="8x8")

    if len(args) != 2:
        sys.exit(not p.print_help())

    covfile, fastafile = args
    cov = DictFile(covfile, cast=float)
    s = Sizes(fastafile)
    data = []
    maxsize, maxcov = opts.maxsize, opts.maxcov
    for ctg, size in s.iter_sizes():
        c = cov.get(ctg, 0)
        if size > maxsize:
            continue
        if c > maxcov:
            continue
        data.append((size, c))

    x, y = zip(*data)
    x = np.array(x)
    y = np.array(y)
    logging.debug("X size {0}, Y size {1}".format(x.size, y.size))

    df = pd.DataFrame()
    xlab, ylab = "Length", "Coverage of depth (X)"
    df[xlab] = x
    df[ylab] = y
    sns.jointplot(xlab,
                  ylab,
                  kind=opts.kind,
                  data=df,
                  xlim=(0, maxsize),
                  ylim=(0, maxcov),
                  stat_func=None,
                  edgecolor="w",
                  color=opts.color)

    figname = covfile + ".pdf"
    savefig(figname, dpi=iopts.dpi, iopts=iopts)
Example #39
0
def draw_chromosomes(
    root,
    bedfile,
    sizes,
    iopts,
    mergedist,
    winsize,
    imagemap,
    mappingfile=None,
    gauge=False,
    legend=True,
    empty=False,
    title=None,
):
    bed = Bed(bedfile)
    prefix = bedfile.rsplit(".", 1)[0]

    if imagemap:
        imgmapfile = prefix + ".map"
        mapfh = open(imgmapfile, "w")
        print('<map id="' + prefix + '">', file=mapfh)

    if mappingfile:
        mappings = DictFile(mappingfile, delimiter="\t")
        classes = sorted(set(mappings.values()))
        preset_colors = (DictFile(
            mappingfile, keypos=1, valuepos=2, delimiter="\t")
                         if DictFile.num_columns(mappingfile) >= 3 else {})
    else:
        classes = sorted(set(x.accn for x in bed))
        mappings = dict((x, x) for x in classes)
        preset_colors = {}

    logging.debug("A total of {} classes found: {}".format(
        len(classes), ",".join(classes)))

    # Assign colors to classes
    ncolors = max(3, min(len(classes), 12))
    palette = set1_n if ncolors <= 8 else set3_n
    colorset = palette(number=ncolors)
    colorset = sample_N(colorset, len(classes))
    class_colors = dict(zip(classes, colorset))
    class_colors.update(preset_colors)
    logging.debug("Assigned colors: {}".format(class_colors))

    chr_lens = {}
    centromeres = {}
    if sizes:
        chr_lens = Sizes(sizes).sizes_mapping
    else:
        for b, blines in groupby(bed, key=(lambda x: x.seqid)):
            blines = list(blines)
            maxlen = max(x.end for x in blines)
            chr_lens[b] = maxlen

    for b in bed:
        accn = b.accn
        if accn == "centromere":
            centromeres[b.seqid] = b.start
        if accn in mappings:
            b.accn = mappings[accn]
        else:
            b.accn = "-"

    chr_number = len(chr_lens)
    if centromeres:
        assert chr_number == len(
            centromeres), "chr_number = {}, centromeres = {}".format(
                chr_number, centromeres)

    r = 0.7  # width and height of the whole chromosome set
    xstart, ystart = 0.15, 0.85
    xinterval = r / chr_number
    xwidth = xinterval * 0.5  # chromosome width
    max_chr_len = max(chr_lens.values())
    ratio = r / max_chr_len  # canvas / base

    # first the chromosomes
    for a, (chr, clen) in enumerate(sorted(chr_lens.items())):
        xx = xstart + a * xinterval + 0.5 * xwidth
        root.text(xx, ystart + 0.01, str(get_number(chr)), ha="center")
        if centromeres:
            yy = ystart - centromeres[chr] * ratio
            ChromosomeWithCentromere(root,
                                     xx,
                                     ystart,
                                     yy,
                                     ystart - clen * ratio,
                                     width=xwidth)
        else:
            Chromosome(root, xx, ystart, ystart - clen * ratio, width=xwidth)

    chr_idxs = dict((a, i) for i, a in enumerate(sorted(chr_lens.keys())))

    alpha = 1
    # color the regions
    for chr in sorted(chr_lens.keys()):
        segment_size, excess = 0, 0
        bac_list = []
        prev_end, prev_klass = 0, None
        for b in bed.sub_bed(chr):
            clen = chr_lens[chr]
            idx = chr_idxs[chr]
            klass = b.accn
            if klass == "centromere":
                continue
            start = b.start
            end = b.end
            if start < prev_end + mergedist and klass == prev_klass:
                start = prev_end
            xx = xstart + idx * xinterval
            yystart = ystart - end * ratio
            yyend = ystart - start * ratio
            root.add_patch(
                Rectangle(
                    (xx, yystart),
                    xwidth,
                    yyend - yystart,
                    fc=class_colors.get(klass, "lightslategray"),
                    lw=0,
                    alpha=alpha,
                ))
            prev_end, prev_klass = b.end, klass

            if imagemap:
                """
                `segment` : size of current BAC being investigated + `excess`
                `excess`  : left-over bases from the previous BAC, as a result of
                            iterating over `winsize` regions of `segment`
                """
                if excess == 0:
                    segment_start = start
                segment = (end - start + 1) + excess
                while True:
                    if segment < winsize:
                        bac_list.append(b.accn)
                        excess = segment
                        break
                    segment_end = segment_start + winsize - 1
                    tlx, tly, brx, bry = (
                        xx,
                        (1 - ystart) + segment_start * ratio,
                        xx + xwidth,
                        (1 - ystart) + segment_end * ratio,
                    )
                    print(
                        "\t" + write_ImageMapLine(
                            tlx,
                            tly,
                            brx,
                            bry,
                            iopts.w,
                            iopts.h,
                            iopts.dpi,
                            chr + ":" + ",".join(bac_list),
                            segment_start,
                            segment_end,
                        ),
                        file=mapfh,
                    )

                    segment_start += winsize
                    segment -= winsize
                    bac_list = []

        if imagemap and excess > 0:
            bac_list.append(b.accn)
            segment_end = end
            tlx, tly, brx, bry = (
                xx,
                (1 - ystart) + segment_start * ratio,
                xx + xwidth,
                (1 - ystart) + segment_end * ratio,
            )
            print(
                "\t" + write_ImageMapLine(
                    tlx,
                    tly,
                    brx,
                    bry,
                    iopts.w,
                    iopts.h,
                    iopts.dpi,
                    chr + ":" + ",".join(bac_list),
                    segment_start,
                    segment_end,
                ),
                file=mapfh,
            )

    if imagemap:
        print("</map>", file=mapfh)
        mapfh.close()
        logging.debug("Image map written to `{0}`".format(mapfh.name))

    if gauge:
        xstart, ystart = 0.9, 0.85
        Gauge(root, xstart, ystart - r, ystart, max_chr_len)

    if "centromere" in class_colors:
        del class_colors["centromere"]

    # class legends, four in a row
    if legend:
        xstart = 0.1
        xinterval = 0.8 / len(class_colors)
        xwidth = 0.04
        yy = 0.08
        for klass, cc in sorted(class_colors.items()):
            if klass == "-":
                continue
            root.add_patch(
                Rectangle((xstart, yy),
                          xwidth,
                          xwidth,
                          fc=cc,
                          lw=0,
                          alpha=alpha))
            root.text(xstart + xwidth + 0.01, yy, latex(klass), fontsize=10)
            xstart += xinterval

    if empty:
        root.add_patch(
            Rectangle((xstart, yy), xwidth, xwidth, fill=False, lw=1))
        root.text(xstart + xwidth + 0.01, yy, empty, fontsize=10)

    if title:
        root.text(0.5, 0.95, markup(title), ha="center", va="center")
Example #40
0
def merge(args):
    """
    %prog merge protein-quartets registry LOST

    Merge protein quartets table with dna quartets registry. This is specific
    to the napus project.
    """
    from jcvi.formats.base import DictFile

    p = OptionParser(merge.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    quartets, registry, lost = args
    qq = DictFile(registry, keypos=1, valuepos=3)
    lost = DictFile(lost, keypos=1, valuepos=0, delimiter='|')
    qq.update(lost)
    fp = open(quartets)
    cases = {
        "AN,CN": 4,
        "BO,AN,CN": 8,
        "BO,CN": 2,
        "BR,AN": 1,
        "BR,AN,CN": 6,
        "BR,BO": 3,
        "BR,BO,AN": 5,
        "BR,BO,AN,CN": 9,
        "BR,BO,CN": 7,
    }
    ip = {
        "syntenic_model": "Syntenic_model_excluded_by_OMG",
        "complete": "Predictable",
        "partial": "Truncated",
        "pseudogene": "Pseudogene",
        "random": "Match_random",
        "real_ns": "Transposed",
        "gmap_fail": "GMAP_fail",
        "AN LOST": "AN_LOST",
        "CN LOST": "CN_LOST",
        "BR LOST": "BR_LOST",
        "BO LOST": "BO_LOST",
        "outside": "Outside_synteny_blocks",
        "[NF]": "Not_found",
    }
    for row in fp:
        atoms = row.strip().split("\t")
        genes = atoms[:4]
        tag = atoms[4]
        a, b, c, d = [qq.get(x, ".").rsplit("-", 1)[-1] for x in genes]
        qqs = [c, d, a, b]
        for i, q in enumerate(qqs):
            if atoms[i] != '.':
                qqs[i] = "syntenic_model"
        # Make comment
        comment = "Case{0}".format(cases[tag])
        dots = sum([1 for x in genes if x == '.'])
        if dots == 1:
            idx = genes.index(".")
            status = qqs[idx]
            status = ip[status]
            comment += "-" + status
        print row.strip() + "\t" + "\t".join(qqs + [comment])
Example #41
0
    def __init__(
        self,
        fig,
        root,
        datafile,
        bedfile,
        layoutfile,
        switch=None,
        tree=None,
        extra_features=None,
        chr_label=True,
        loc_label=True,
        genelabelsize=0,
        pad=0.05,
        vpad=0.015,
        scalebar=False,
        shadestyle="curve",
        glyphstyle="arrow",
        glyphcolor: BasePalette = OrientationPalette(),
    ):
        _, h = fig.get_figwidth(), fig.get_figheight()
        bed = Bed(bedfile)
        order = bed.order
        bf = BlockFile(datafile)
        self.layout = lo = Layout(layoutfile)
        switch = DictFile(switch, delimiter="\t") if switch else None
        if extra_features:
            extra_features = Bed(extra_features)

        exts = []
        extras = []
        for i in range(bf.ncols):
            ext = bf.get_extent(i, order)
            exts.append(ext)
            if extra_features:
                start, end, si, ei, chr, orientation, span = ext
                start, end = start.start, end.end  # start, end coordinates
                ef = list(extra_features.extract(chr, start, end))

                # Pruning removes minor features with < 0.1% of the region
                ef_pruned = [x for x in ef if x.span >= span / 1000]
                print(
                    "Extracted {0} features "
                    "({1} after pruning)".format(len(ef), len(ef_pruned)),
                    file=sys.stderr,
                )
                extras.append(ef_pruned)

        maxspan = max(exts, key=lambda x: x[-1])[-1]
        scale = maxspan / 0.65

        self.gg = gg = {}
        self.rr = []
        ymids = []
        glyphcolor = (
            OrientationPalette()
            if glyphcolor == "orientation"
            else OrthoGroupPalette(bf.grouper())
        )
        for i in range(bf.ncols):
            ext = exts[i]
            ef = extras[i] if extras else None
            r = Region(
                root,
                ext,
                lo[i],
                bed,
                scale,
                switch,
                genelabelsize=genelabelsize,
                chr_label=chr_label,
                loc_label=loc_label,
                vpad=vpad,
                extra_features=ef,
                glyphstyle=glyphstyle,
                glyphcolor=glyphcolor,
            )
            self.rr.append(r)
            # Use tid and accn to store gene positions
            gg.update(dict(((i, k), v) for k, v in r.gg.items()))
            ymids.append(r.y)

        def offset(samearc):
            if samearc == "above":
                return 2 * pad
            if samearc == "above2":
                return 4 * pad
            if samearc == "below":
                return -2 * pad
            if samearc == "below2":
                return -4 * pad

        for i, j, blockcolor, samearc in lo.edges:
            for ga, gb, h in bf.iter_pairs(i, j):
                a, b = gg[(i, ga)], gg[(j, gb)]
                if samearc is not None:
                    ymid = ymids[i] + offset(samearc)
                else:
                    ymid = (ymids[i] + ymids[j]) / 2
                Shade(root, a, b, ymid, fc=blockcolor, lw=0, alpha=1, style=shadestyle)

            for ga, gb, h in bf.iter_pairs(i, j, highlight=True):
                a, b = gg[(i, ga)], gg[(j, gb)]
                if samearc is not None:
                    ymid = ymids[i] + offset(samearc)
                else:
                    ymid = (ymids[i] + ymids[j]) / 2
                Shade(
                    root, a, b, ymid, alpha=1, highlight=h, zorder=2, style=shadestyle
                )

        if scalebar:
            print("Build scalebar (scale={})".format(scale), file=sys.stderr)
            # Find the best length of the scalebar
            ar = [1, 2, 5]
            candidates = (
                [1000 * x for x in ar]
                + [10000 * x for x in ar]
                + [100000 * x for x in ar]
            )
            # Find the one that's close to an optimal canvas size
            dists = [(abs(x / scale - 0.12), x) for x in candidates]
            dist, candidate = min(dists)
            dist = candidate / scale
            x, y, yp = 0.22, 0.92, 0.005
            a, b = x - dist / 2, x + dist / 2
            lsg = "lightslategrey"
            root.plot([a, a], [y - yp, y + yp], "-", lw=2, color=lsg)
            root.plot([b, b], [y - yp, y + yp], "-", lw=2, color=lsg)
            root.plot([a, b], [y, y], "-", lw=2, color=lsg)
            root.text(
                x,
                y + 0.02,
                human_size(candidate, precision=0),
                ha="center",
                va="center",
            )

        if tree:
            from jcvi.graphics.tree import draw_tree, read_trees

            trees = read_trees(tree)
            ntrees = len(trees)
            logging.debug("A total of {0} trees imported.".format(ntrees))
            xiv = 1.0 / ntrees
            yiv = 0.3
            xstart = 0
            ystart = min(ymids) - 0.4
            for i in range(ntrees):
                ax = fig.add_axes([xstart, ystart, xiv, yiv])
                label, outgroup, color, tx = trees[i]
                draw_tree(
                    ax,
                    tx,
                    outgroup=outgroup,
                    rmargin=0.4,
                    leaffont=11,
                    treecolor=color,
                    supportcolor=color,
                    leafcolor=color,
                )
                xstart += xiv
                RoundLabel(ax, 0.5, 0.3, label, fill=True, fc="lavender", color=color)
Example #42
0
def sizes(args):
    """
    %prog sizes gaps.bed a.fasta b.fasta

    Take the flanks of gaps within a.fasta, map them onto b.fasta. Compile the
    results to the gap size estimates in b. The output is detailed below:

    Columns are:
    1.  A scaffold
    2.  Start position
    3.  End position
    4.  Gap identifier
    5.  Gap size in A (= End - Start)
    6.  Gap size in B (based on BLAST, see below)

    For each gap, I extracted the left and right sequence (mostly 2Kb, but can be shorter
    if it runs into another gap) flanking the gap. The flanker names look like gap.00003L
    and gap.00003R means the left and right flanker of this particular gap, respectively.

    The BLAST output is used to calculate the gap size. For each flanker sequence, I took
    the best hit, and calculate the inner distance between the L match range and R range.
    The two flankers must map with at least 98% identity, and in the same orientation.

    NOTE the sixth column in the list file is not always a valid number. Other values are:
    -   na: both flankers are missing in B
    -   Singleton: one flanker is missing
    -   Different chr: flankers map to different scaffolds
    -   Strand +|-: flankers map in different orientations
    -   Negative value: the R flanker map before L flanker
    """
    from jcvi.formats.base import DictFile
    from jcvi.apps.align import blast

    p = OptionParser(sizes.__doc__)
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    gapsbed, afasta, bfasta = args
    pf = gapsbed.rsplit(".", 1)[0]
    extbed = pf + ".ext.bed"
    extfasta = pf + ".ext.fasta"

    if need_update(gapsbed, extfasta):
        extbed, extfasta = flanks([gapsbed, afasta])

    q = op.basename(extfasta).split(".")[0]
    r = op.basename(bfasta).split(".")[0]
    blastfile = "{0}.{1}.blast".format(q, r)

    if need_update([extfasta, bfasta], blastfile):
        blastfile = blast([bfasta, extfasta, "--wordsize=50", "--pctid=98"])

    labelsfile = blast_to_twobeds(blastfile)
    labels = DictFile(labelsfile, delimiter='\t')
    bed = Bed(gapsbed)
    for b in bed:
        b.score = b.span
        accn = b.accn
        print "\t".join((str(x) for x in (b.seqid, b.start - 1, b.end, accn,
                        b.score, labels.get(accn, "na"))))