def test_graph2vec(): """ Test the Graph2Vec embedding. """ graphs = [nx.newman_watts_strogatz_graph(50, 5, 0.3) for _ in range(100)] model = Graph2Vec() model.fit(graphs) embedding = model.get_embedding() assert embedding.shape[0] == len(graphs) assert embedding.shape[1] == model.dimensions graphs = [] for _ in range(50): graph = nx.newman_watts_strogatz_graph(50, 5, 0.3) nx.set_node_attributes(graph, {j: str(j) for j in range(50)}, "feature") graphs.append(graph) model = Graph2Vec(attributed=True) model.fit(graphs) embedding = model.get_embedding() assert embedding.shape[0] == len(graphs) assert embedding.shape[1] == model.dimensions assert type(embedding) == np.ndarray
reader = GraphReader("facebook") graph = reader.get_graph() target = reader.get_target() #------------------------------- # Graph2Vec attributed example #------------------------------- graphs = [] for i in range(50): graph = nx.newman_watts_strogatz_graph(50, 5, 0.3) nx.set_node_attributes(graph, {j: str(j) for j in range(50)}, "feature") graphs.append(graph) model = Graph2Vec(attributed=True) model.fit(graphs) model.get_embedding() #------------------- # Graph2Vec example #------------------- graphs = [nx.newman_watts_strogatz_graph(50, 5, 0.3) for _ in range(1000)] model = Graph2Vec() model.fit(graphs) model.get_embedding()
#----------------------------------- # Graph reader example #----------------------------------- reader = GraphReader("facebook") graphs = reader.get_graph() target = reader.get_target() #----------------------------------- # Graph2Vec example #----------------------------------- graphs = [nx.newman_watts_strogatz_graph(50, 5, 0.3) for _ in range(1000)] model = Graph2Vec() model.fit(graphs) model.get_embedding() #----------------------------------- # BoostNE example #----------------------------------- g = nx.newman_watts_strogatz_graph(100, 20, 0.05) model = BoostNE() model.fit(g) model.get_embedding()