示例#1
0
def test_graph2vec():
    """
    Test the Graph2Vec embedding.
    """
    graphs = [nx.newman_watts_strogatz_graph(50, 5, 0.3) for _ in range(100)]

    model = Graph2Vec()

    model.fit(graphs)
    embedding = model.get_embedding()

    assert embedding.shape[0] == len(graphs)
    assert embedding.shape[1] == model.dimensions

    graphs = []

    for _ in range(50):
        graph = nx.newman_watts_strogatz_graph(50, 5, 0.3)
        nx.set_node_attributes(graph, {j: str(j)
                                       for j in range(50)}, "feature")
        graphs.append(graph)

    model = Graph2Vec(attributed=True)

    model.fit(graphs)
    embedding = model.get_embedding()

    assert embedding.shape[0] == len(graphs)
    assert embedding.shape[1] == model.dimensions
    assert type(embedding) == np.ndarray
示例#2
0
reader = GraphReader("facebook")

graph = reader.get_graph()
target = reader.get_target()

#-------------------------------
# Graph2Vec attributed example
#-------------------------------

graphs = []

for i in range(50):
    graph = nx.newman_watts_strogatz_graph(50, 5, 0.3)
    nx.set_node_attributes(graph, {j: str(j) for j in range(50)}, "feature")
    graphs.append(graph)
model = Graph2Vec(attributed=True)

model.fit(graphs)
model.get_embedding()

#-------------------
# Graph2Vec example
#-------------------

graphs = [nx.newman_watts_strogatz_graph(50, 5, 0.3) for _ in range(1000)]

model = Graph2Vec()

model.fit(graphs)
model.get_embedding()
示例#3
0
#-----------------------------------
# Graph reader example
#-----------------------------------

reader = GraphReader("facebook")

graphs = reader.get_graph()
target = reader.get_target()
#-----------------------------------
# Graph2Vec example
#-----------------------------------

graphs = [nx.newman_watts_strogatz_graph(50, 5, 0.3) for _ in range(1000)]

model = Graph2Vec()

model.fit(graphs)
model.get_embedding()

#-----------------------------------
# BoostNE example
#-----------------------------------

g = nx.newman_watts_strogatz_graph(100, 20, 0.05)

model = BoostNE()

model.fit(g)
model.get_embedding()