Example #1
0
    def __call__(self, x):
        tensors = []
        for in_tensor in x:
            shape = K.int_shape(in_tensor)
            if shape[1] == self.output_dim:
                tensor = Conv2D(self.cur_channels,
                                strides=1,
                                **self.conv_param)(in_tensor)
                tensors.append(tensor)

            if shape[1] > self.output_dim:
                tensor = Conv2D(self.cur_channels,
                                strides=2,
                                **self.conv_param)(in_tensor)
                tensors.append(tensor)

            if shape[1] < self.output_dim:
                tensor = Lambda(lambda x: K.resize_images(
                    x, 2, 2, 'channels_last'))(in_tensor)

                tensors.append(tensor)

        if len(tensors) > 1:
            tensor = Add()(tensors)
        else:
            tensor = tensors[0]
        tensor = BatchNormalization()(tensor)
        tensor = Activation('relu')(tensor)

        return tensor
Example #2
0
def resize_image(inp, s, data_format):

    return Lambda(lambda x: K.resize_images(x,
                                            height_factor=s[0],
                                            width_factor=s[1],
                                            data_format=data_format,
                                            interpolation='bilinear'))(inp)
Example #3
0
    def __call__(self, shape, dtype="float32"):
        """ Call function for the ICNR initializer.

        Parameters
        ----------
        shape: tuple or list
            The required resized shape for the output tensor
        dtype: str
            The data type for the tensor

        Returns
        -------
        tensor
            The modified kernel weights
        """
        shape = list(shape)
        if self.scale == 1:
            return self.initializer(shape)
        new_shape = shape[:3] + [shape[3] // (self.scale**2)]
        if isinstance(self.initializer, dict):
            self.initializer = initializers.deserialize(self.initializer)
        var_x = self.initializer(new_shape, dtype)
        var_x = K.permute_dimensions(var_x, [2, 0, 1, 3])
        var_x = K.resize_images(var_x,
                                self.scale,
                                self.scale,
                                "channels_last",
                                interpolation="nearest")
        var_x = self._space_to_depth(var_x)
        var_x = K.permute_dimensions(var_x, [1, 2, 0, 3])
        logger.debug("Output shape: %s", var_x.shape)
        return var_x
 def resize_image(self, input, factors):
     return Lambda(lambda x: K.resize_images(x=x,
                                             height_factor=factors[0],
                                             width_factor=factors[1],
                                             data_format='channels_last',
                                             interpolation='bilinear'))(
                                                 input)
Example #5
0
    def call(self, inputs, **kwargs):  # pylint:disable=unused-argument
        """ Call the upsample layer

        Parameters
        ----------
        inputs: tensor
            Input tensor, or list/tuple of input tensors
        kwargs: dict
            Additional keyword arguments. Unused

        Returns
        -------
        tensor
            A tensor or list/tuple of tensors
        """
        if isinstance(self.size, int):
            retval = K.resize_images(inputs,
                                     self.size,
                                     self.size,
                                     "channels_last",
                                     interpolation=self.interpolation)
        else:
            # Arbitrary resizing
            size = int(round(K.int_shape(inputs)[1] * self.size))
            if get_backend() != "amd":
                retval = tf.image.resize(inputs, (size, size),
                                         method=self.interpolation)
            else:
                raise NotImplementedError
        return retval
Example #6
0
def resize(input):
    (bs, h, w, num_c) = K.int_shape(input)
    map = K.resize_images(
        input,
        224/7,
        224/7,
        "channels_last"
    )
    # print("map shape", K.int_shape(map))
    # normalize heatmap
    # min = K.expand_dims(K.expand_dims(K.min(map, axis=(1,2))))
    # min = K.repeat_elements(min, rep=h0, axis=1)
    # min = K.repeat_elements(min, rep=w0, axis= 2)
    # max = K.expand_dims(K.expand_dims(K.max(map, axis=(1,2))))
    # max = K.repeat_elements(max, rep=h0, axis=1)
    # max = K.repeat_elements(max, rep=w0, axis= 2)

    # map = layers.BatchNormalization()(map)
    min = K.min(map)
    map = map - min
    sum = K.sum(map, axis=(1,2,3))
    sum = K.expand_dims(K.expand_dims(K.expand_dims(sum)))
    sum = K.repeat_elements(sum, 224, axis=1)
    sum = K.repeat_elements(sum, 224, axis=2)
    # sum = K.sum(map)
    map = 224*map/sum # force the sum of attention to be a constant
    return map
Example #7
0
    def max_depool(self,
                   in_layer=None,
                   depth_factor=2,
                   height_factor=2,
                   width_factor=2):
        if in_layer == None:
            in_layer = self.layer

        #if 1: # alt with deconv
        #lo, li = self.deconvolutional_layer(1, [1,1], None, stride=[2,2], name="g_D1", reuse=reuse, batch_norm=use_batch_norm, train=train)
        #return lo
        '''
		if len(self.layer.get_shape()) == 4:
			outWidth = in_layer.get_shape()[2] * window_stride[0] + window_size[0] - window_stride[0]
			outHeight = in_layer.get_shape()[1] * window_stride[1] + window_size[1] -  window_stride[1]
			self.layer = tf.image.resize_images(in_layer, [int(outHeight), int(outWidth)], 1) #1 = ResizeMethod.NEAREST_NEIGHBOR
			print("Max Depool {}: {}".format(window_size, self.layer.get_shape()))
		'''
        if len(self.layer.get_shape()) == 4:
            #self.layer = tf.contrib.keras.backend.resize_images(self.layer, height_factor, width_factor, 'channels_last')
            self.layer = kb.resize_images(self.layer, height_factor,
                                          width_factor, 'channels_last')
            print("Max Depool : {}".format(self.layer.get_shape()))
        if len(self.layer.get_shape()) == 5:
            #self.layer = tf.contrib.keras.backend.resize_volumes(self.layer, depth_factor, height_factor, width_factor, 'channels_last')
            self.layer = kb.resize_volumes(self.layer, depth_factor,
                                           height_factor, width_factor,
                                           'channels_last')
            print("Max Depool : {}".format(self.layer.get_shape()))
        return self.layer
Example #8
0
def get_model():
    img_input = Input(shape=(IMG_HEIGHT, IMG_WIDTH, 1))
    x = img_input
    print(x.get_shape())

    x = Dense(32, activation='relu')(x)
    x = Conv2D(filters=64, kernel_size=3, strides=1, padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = UpSampling2D(size=2)(x)
    x = MaxPooling2D(pool_size=(2, 2))(x)
    x = Flatten()(x)
    x = Dropout(0.25)(x)
    x = Reshape(target_shape=(int(conv_shape[1]), int(conv_shape[2]*conv_shape[3])))(x)

    model.add(LSTM(LSTM_UNITS, input_shape=(SEN_LEN, len(all_chars)), return_sequences=True))
    model.add(LSTM(LSTM_UNITS, input_shape=(SEN_LEN, len(all_chars)), return_sequences=False))

    # 新的写法
    model.add(Bidirectional(LSTM(128, dropout=0.2, recurrent_dropout=0.2)))

    # 废弃的写法
    # gru_1 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal')(x)
    # gru_1b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal')(x)
    # # keras.layers.add
    # gru1_merged = add([gru_1, gru_1b])

    x = K.reshape(x, (-1, AB_PAIRS))
    x = K.softmax(x)
    x = K.resize_images(x, IMG_HEIGHT / curr_height, IMG_WIDTH / curr_width, data_format="channels_last")

    x = Lambda(lambda z: reshape(z), output_shape=(IMG_HEIGHT, IMG_WIDTH, AB_PAIRS))(x)

    model = Model(inputs=img_input, outputs=x)
    model.compile(loss='categorical_crossentropy', optimizer='Adadelta', metrics=['accuracy'])
Example #9
0
 def call(self, x):
     h, w = self.shape[1:3]
     for l in levels:
         pool = K.pool2d(x, pool_size=(h // l, w // l), strides=(h // l, w // l), padding='valid', data_format=None, pool_mode='max')
         pool = K.resize_images(x, h * l, w * l, data_format='channels_last')
         x += pool
     return x
Example #10
0
    def _resize_nearest_neighbour(self, input_tensor, size):
        """ Resize a tensor using nearest neighbor interpolation.

        Notes
        -----
        Tensorflow has a bug that resizes the image incorrectly if :attr:`align_corners` is not set
        to ``True``. Keras Backend does not set this flag, so we explicitly call the Tensorflow
        operation for non-amd backends.

        Parameters
        ----------
        input_tensor: tensor
            The tensor to be resized
        tuple: int
            The (`h`, `w`) that the tensor should be resized to (used for non-amd backends only)

        Returns
        -------
        tensor
            The input tensor resized to the given size
        """
        if get_backend() == "amd":
            retval = K.resize_images(input_tensor,
                                     self.scale,
                                     self.scale,
                                     "channels_last",
                                     interpolation="nearest")
        else:
            retval = tf.image.resize_nearest_neighbor(input_tensor,
                                                      size=size,
                                                      align_corners=True)
        logger.debug("Input Tensor: %s, Output Tensor: %s", input_tensor,
                     retval)
        return retval
Example #11
0
    def _backward_pass(self, X, target_layer, d_switch, feat_map):
        # Run deconv/maxunpooling until input pixel space
        layer_index = self.lnames.index(target_layer)
        # Get the output of the target_layer of interest
        out = self[target_layer].output
        if (str(type(out)) != "<type 'list'>"):
            out = [out]
        layer_output = K.function([self[self.lnames[0]].input], out)
        X_outl = layer_output([X])
        # Special case for the starting layer where we may want
        # to switchoff somes maps/ activations
        print("Deconvolving %s..." % target_layer)
        #if "maxpooling2d" in target_layer:
        if "pool" in target_layer:
            #X_maxunp = K.pool.max_pool_2d_same_size(
            X_maxunp = pool.max_pool_2d_same_size(self[target_layer].input,
                                                  self[target_layer].pool_size)
            unpool_func = K.function([self[self.lnames[0]].input], X_maxunp)
            X_outl = unpool_func([X])
            if feat_map is not None:
                for i in range(X_outl.shape[1]):
                    if i != feat_map:
                        X_outl[:, i, :, :] = 0
                for i in range(X_outl.shape[0]):
                    iw, ih = np.unravel_index(
                        X_outl[i, feat_map, :, :].argmax(),
                        X_outl[i, feat_map, :, :].shape)
                    m = np.max(X_outl[i, feat_map, :, :])
                    X_outl[i, feat_map, :, :] = 0
                    X_outl[i, feat_map, iw, ih] = m
        #elif "conv2d" in target_layer:
        elif "conv" in target_layer:
            X_outl = self._deconv(X_outl,
                                  target_layer,
                                  d_switch,
                                  feat_map=feat_map)
        else:
            raise ValueError(
                "Invalid layer name: %s \n Can only handle maxpool and conv" %
                target_layer)
        # Iterate over layers (deepest to shallowest)
        for lname in self.lnames[:layer_index][::-1]:
            print("Deconvolving %s..." % lname)
            # Unpool, Deconv or do nothing
            if "maxpooling2d" in lname:
                p1, p2 = self[lname].pool_size
                uppool = K.function([self.x],
                                    K.resize_images(self.x, p1, p2, "th"))
                X_outl = uppool([X_outl])

            elif "conv2d" in lname:
                X_outl = self._deconv(X_outl, lname, d_switch)
            elif "padding" in lname:
                pass
            else:
                raise ValueError(
                    "Invalid layer name: %s \n Can only handle maxpool and conv"
                    % lname)
        return X_outl
Example #12
0
def build_image_resizer():
    input_layer = Input(shape=(64, 64, 3))

    resized_images = Lambda(lambda x: K.resize_images(x, height_factor=3, width_factor=3,
                                                      data_format='channels_last'))(input_layer)

    model = Model(inputs=[input_layer], outputs=[resized_images])
    return model
Example #13
0
   def call(self, x, mask=None):
       output = K.resize_images(x, self.size[0], self.size[1], 
                                self.dim_ordering)
 
       f = K.gradients(K.sum(self._master_layer.output), 
                       self._master_layer.input) * output
 
       return f
Example #14
0
    def call(self, inputs):

        (x, scale, bias) = inputs
        mean = K.mean(x, axis=self.axis, keepdims=True)
        std = K.std(x, axis=self.axis, keepdims=True) + self.epsilon
        scale = K.resize_images(scale,
                                self.scale_ratio,
                                self.scale_ratio,
                                K.image_data_format(),
                                interpolation=self.interpolation)
        bias = K.resize_images(bias,
                               self.scale_ratio,
                               self.scale_ratio,
                               K.image_data_format(),
                               interpolation=self.interpolation)

        return (x - mean) / std * scale + bias
Example #15
0
 def call(self, x, mask=None):
     # TODO: implement for dim_ordering='tf'
     img = K.resize_images(x, self.size[0], self.size[1], self.dim_ordering)
     padded = T.zeros(
         (img.shape[0], img.shape[1], self.shape[0], self.shape[1]))
     padded = T.set_subtensor(padded[:, :, :img.shape[2], :img.shape[3]],
                              img)
     return T.switch(self.ind, padded, T.zeros_like(padded))
Example #16
0
 def call(self, inputs):
     return backend.resize_images(
         inputs,
         self.size[0],
         self.size[1],
         self.data_format,
         interpolation=self.interpolation,
     )
 def call(self, x, mask=None):
     resize_image = K.resize_images(K.expand_dims(K.expand_dims(1 + self.kernel, -1), 0), self.downsampling_factor, self.downsampling_factor, data_format=K.image_data_format(), interpolation='bilinear')
     # resize_image = K.concatenate([K.zeros_like(resize_image[:, :1, :, :]), resize_image], axis=1)
     # resize_image = K.concatenate([resize_image, K.zeros_like(resize_image[:, :1, :, :])], axis=1)
     # resize_image = K.concatenate([K.zeros_like(resize_image[:, :, :1, :]), resize_image], axis=2)
     # resize_image = K.concatenate([resize_image, K.zeros_like(resize_image[:, :, :1, :])], axis=2)
     output = x * resize_image
     
     return output
Example #18
0
def deconv(data, filters, s=1):
    output = Lambda(lambda x: K.resize_images(x, 2, 2, "channels_last"))(data)

    #output = Lambda(lambda x:tf.image.resize_image_with_pad(x,h,h))(data)
    output = Conv2D(filters, (3, 3),
                    strides=s,
                    activation='relu',
                    padding='same')(output)
    return output
 def _op_when_equal(self, inputs, pool_size, strides, padding, data_format):
     self.expected_out_shape = K.int_shape(inputs[1])
     self.size = self.strides
     mask = K.pool2d(inputs[1],
                     pool_size,
                     strides,
                     padding,
                     data_format,
                     pool_mode='max')
     mask = K.resize_images(mask, self.size[0], self.size[1],
                            self.data_format)
     adjusted_ref = self.adjust_reference_tensor(inputs[1], case='equal')
     mask = K.greater_equal(adjusted_ref, mask)
     mask = self._adjust_size(mask)
     mask = K.cast(mask, dtype='float32')
     upsampled_input = self._adjust_size(
         K.resize_images(inputs[0], self.size[0], self.size[1],
                         self.data_format))
     return upsampled_input * mask
 def reshape_softmax(x):
     x = K.permute_dimensions(x, [0, 2, 3, 1])  # last dimension in number of filters
     x = K.reshape(x, (batch_size * current_h * current_w, nb_classes))
     x = K.softmax(x)
     # Add a zero column so that x has the same dimension as the target (313 classes + 1 weight)
     xc = K.zeros((batch_size * current_h * current_w, 1))
     x = K.concatenate([x, xc], axis=1)
     # Reshape back to (batch_size, h, w, nb_classes + 1) to satisfy keras' shape checks
     x = K.reshape(x, (batch_size, current_h, current_w, nb_classes + 1))
     x = K.resize_images(x, h / current_h, w / current_w, "tf")
     # x = K.permute_dimensions(x, [0, 3, 1, 2])
     return x
Example #21
0
 def reshape_softmax(x):
     x = K.permute_dimensions(
         x, [0, 2, 3, 1])  # last dimension in number of filters
     x = K.reshape(x, (batch_size * current_h * current_w, nb_classes))
     x = K.softmax(x)
     # Add a zero column so that x has the same dimension as the target (313 classes + 1 weight)
     xc = K.zeros((batch_size * current_h * current_w, 1))
     x = K.concatenate([x, xc], axis=1)
     # Reshape back to (batch_size, h, w, nb_classes + 1) to satisfy keras' shape checks
     x = K.reshape(x, (batch_size, current_h, current_w, nb_classes + 1))
     x = K.resize_images(x, h / current_h, w / current_w, "tf")
     # x = K.permute_dimensions(x, [0, 3, 1, 2])
     return x
    def call(self, input_tensor, training=None):
        input_transposed = tf.transpose(input_tensor, [4, 0, 1, 2, 3, 5])
        input_shape = K.shape(input_transposed)
        input_tensor_reshaped = K.reshape(input_transposed, [
            input_shape[1] * input_shape[0], self.input_height, self.input_width, self.input_depth, self.input_num_atoms])
        input_tensor_reshaped.set_shape((None, self.input_height, self.input_width, self.input_depth, self.input_num_atoms))


        if self.upsamp_type == 'resize':
#           added 1 more self.scaling
            upsamp = K.resize_images(input_tensor_reshaped, self.scaling, self.scaling, self.scaling, 'channels_last')
            outputs = K.conv3d(upsamp, kernel=self.W, strides=(1, 1, 1), padding=self.padding, data_format='channels_last')
        elif self.upsamp_type == 'subpix':
            conv = K.conv3d(input_tensor_reshaped, kernel=self.W, strides=(1, 1, 1), padding='same',
                            data_format='channels_last')
            outputs = tf.depth_to_space(conv, self.scaling)
        else:
            batch_size = input_shape[1] * input_shape[0]

            # Infer the dynamic output shape:
            out_height = deconv_length(self.input_height, self.scaling, self.kernel_size, self.padding)
            out_width = deconv_length(self.input_width, self.scaling, self.kernel_size, self.padding)
            out_depth = deconv_length(self.input_depth, self.scaling, self.kernel_size, self.padding)
            output_shape = (batch_size, out_height, out_width, out_depth, self.num_capsule * self.num_atoms)

            outputs = K.conv3d_transpose(input_tensor_reshaped, self.W, output_shape, (self.scaling, self.scaling, self.scaling),
                                     padding=self.padding, data_format='channels_last')

        votes_shape = K.shape(outputs)
        _, conv_height, conv_width, conv_depth, _ = outputs.get_shape()

        votes = K.reshape(outputs, [input_shape[2], input_shape[1], input_shape[0], votes_shape[1], votes_shape[2],
                                 self.num_capsule, self.num_atoms])
        votes.set_shape((None, self.input_num_capsule, conv_height.value, conv_width.value, conv_depth.value,
                         self.num_capsule, self.num_atoms))

        logit_shape = K.stack([
            input_shape[1], input_shape[0], votes_shape[1], votes_shape[2], votes_shape[3], self.num_capsule])
        biases_replicated = K.tile(self.b, [votes_shape[1], votes_shape[2], votes_shape[3], 1, 1])

        activations = update_routing(
            votes=votes,
            biases=biases_replicated,
            logit_shape=logit_shape,
            num_dims=7,
            input_dim=self.input_num_capsule,
            output_dim=self.num_capsule,
            num_routing=self.routings)

        return activations
Example #23
0
def reshape_softmax(x):
    shape = K.shape(x)
    x = K.reshape(x, (shape[0] * shape[1] * shape[2], 400))
    x = K.softmax(x)

    # Add a zero column so that x has the same dimension as the target (313 classes + 1 weight)
    xc = K.zeros((b_size * 56 * 56, 1))
    x = K.concatenate([x, xc], axis=-1)

    # Reshape back to (batch_size, h, w, nb_classes + 1) to satisfy keras' shape checks
    x = K.reshape(x, (shape[0], shape[1], shape[2], 400 + 1))
    x = K.resize_images(x, 224 // 56, 224 // 56, "channels_last")

    return x
Example #24
0
    def normalize_pool_map(score_map,
                           pool_size=(2, 2),
                           strides=(2, 2),
                           temperature=1):
        # compute safe softmax by pool operation
        padding = 'same'
        input_shape = K.int_shape(score_map)

        pooled_max_map = K.pool2d(score_map,
                                  pool_size=pool_size,
                                  strides=strides,
                                  pool_mode='max',
                                  padding=padding)
        max_map = K.resize_images(pooled_max_map,
                                  pool_size[0],
                                  pool_size[1],
                                  data_format='channels_last')

        max_map = max_map[:, :input_shape[1], :input_shape[2], :]
        max_map = K.stop_gradient(max_map)
        score_map = score_map - max_map
        score_map = tf.exp(score_map / temperature)

        pooled_score_map = K.pool2d(score_map,
                                    pool_size=pool_size,
                                    strides=strides,
                                    pool_mode='avg',
                                    padding=padding)

        avg_score_map = K.resize_images(pooled_score_map,
                                        pool_size[0],
                                        pool_size[1],
                                        data_format='channels_last')
        # fit caps columns to feature map
        avg_score_map = avg_score_map[:, :input_shape[1], :input_shape[2], :]

        return score_map / (avg_score_map + K.epsilon())
    def _backward_pass(self, X, target_layer, d_switch, feat_map):
        # Run deconv/maxunpooling until input pixel space
        layer_index = self.lnames.index(target_layer)
        # Get the output of the target_layer of interest
        layer_output = K.function(
            [self[self.lnames[0]].input], self[target_layer].output)
        X_outl = layer_output([X])
        # Special case for the starting layer where we may want
        # to switchoff somes maps/ activations
        print "Deconvolving %s..." % target_layer
        if "maxpooling2d" in target_layer:
            X_maxunp = K.pool.max_pool_2d_same_size(
                self[target_layer].input, self[target_layer].pool_size)
            unpool_func = K.function([self[self.lnames[0]].input], X_maxunp)
            X_outl = unpool_func([X])
            if feat_map is not None:
                for i in range(X_outl.shape[1]):
                    if i != feat_map:
                        X_outl[:, i, :, :] = 0
                for i in range(X_outl.shape[0]):
                    iw, ih = np.unravel_index(
                        X_outl[i, feat_map, :, :].argmax(), X_outl[i, feat_map, :, :].shape)
                    m = np.max(X_outl[i, feat_map, :, :])
                    X_outl[i, feat_map, :, :] = 0
                    X_outl[i, feat_map, iw, ih] = m
        elif "convolution2d" in target_layer:
            X_outl = self._deconv(X_outl, target_layer,
                                  d_switch, feat_map=feat_map)
        else:
            raise ValueError(
                "Invalid layer name: %s \n Can only handle maxpool and conv" % target_layer)
        # Iterate over layers (deepest to shallowest)
        for lname in self.lnames[:layer_index][::-1]:
            print "Deconvolving %s..." % lname
            # Unpool, Deconv or do nothing
            if "maxpooling2d" in lname:
                p1, p2 = self[lname].pool_size
                uppool = K.function(
                    [self.x], K.resize_images(self.x, p1, p2, "th"))
                X_outl = uppool([X_outl])

            elif "convolution2d" in lname:
                X_outl = self._deconv(X_outl, lname, d_switch)
            elif "padding" in lname:
                pass
            else:
                raise ValueError(
                    "Invalid layer name: %s \n Can only handle maxpool and conv" % lname)
        return X_outl
Example #26
0
 def call(self, x, mask=None):
     x = K.sum(x, axis=-1, keepdims=True)
     x = K.resize_images(x, self.nb_row, self.nb_col, self.dim_ordering)
     conv_out = self.deconv2d(x=x, kernel=self.W, dim_ordering=self.dim_ordering, filter_shape=self.W_shape)
     if self.dim_ordering == 'th':
         output = conv_out + K.reshape(self.b, (self.nb_filter, 1, 1))
     elif self.dim_ordering == 'tf':
         output = conv_out + K.reshape(self.b, (self.nb_filter, 1, 1))
         # output = conv_out + self.b
     else:
         raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
     output = self.activation(output)
     # return output
     results_shape = output.shape
     return output.reshape((1, results_shape[0], results_shape[1], results_shape[2]))
Example #27
0
    def call(self, inputs, **kwargs):
        source, target = inputs
        source_shape = K.shape(source)
        target_shape = K.shape(target)

        if K.image_data_format() == 'channels_last':
            source_height, source_width = source_shape[1:3]
            target_height, target_width = target_shape[1:3]
        else:
            source_height, source_width = source_shape[2:4]
            target_height, target_width = target_shape[2:4]

        return K.resize_images(source, target_height / source_height,
                               target_width / source_width,
                               K.image_data_format())
Example #28
0
def resize_image(inp, s, data_format):
    try:

        return Lambda(lambda x: K.resize_images(x,
                                                height_factor=s[0],
                                                width_factor=s[1],
                                                data_format=data_format,
                                                interpolation='bilinear'))(inp)

    except Exception as e:
        # if keras is old , then rely on the tf function ... sorry theono/cntk users .
        assert data_format == 'channels_last'
        assert IMAGE_ORDERING == 'channels_last'
        return Lambda(lambda x: tf.image.resize_images(x, (K.int_shape(x)[
            1] * s[0], K.int_shape(x)[2] * s[1])))(inp)
Example #29
0
def build_fr_combined_network(encoder, generator, fr_model):
    input_image = Input(shape=(64, 64, 3))
    input_label = Input(shape=(6,))

    latent0 = encoder(input_image)

    gen_images = generator([latent0, input_label])

    fr_model.trainable = False

    resized_images = Lambda(lambda x: K.resize_images(gen_images, height_factor=2, width_factor=2,
                                                      data_format='channels_last'))(gen_images)
    embeddings = fr_model(resized_images)

    model = Model(inputs=[input_image, input_label], outputs=[embeddings])
    return model
Example #30
0
def get_cam_img(model, X, label, 
				cam_conv_layer_name, 
				ratio=1):
	"""Get class map image.

	# Arguments:
		model: Trained CAM model
		X: test image array
		label: which label you want to visualize
		cam_conv_layer_name: the name of new added conv layer
		ratio: upsampling ratio

	"""
	inc = model.input

	# The activation of conv before gap layer
	# f_k(x, y), for VGG16, the shape is (1, 14, 14, 1024)
	conv_index = index_layer(model, cam_conv_layer_name)
	conv_output = model.layers[conv_index].output

	# Project the conv output to image space
	resized_output = K.resize_images(conv_output, ratio, ratio, 'tf')

	# The weights of GAP layer to softmax layer(ignore bias), the shape is (1024, num_classes)
	weights = model.layers[-1].weights[0]

	# Get the weighted conv activations
	classmap = K.dot(resized_output, weights)

	# Define the function
	get_cmap = K.function([K.learning_phase(), inc], [classmap])

	# Get class map in image space
	im_cam = get_cmap([0, X])[0]

	# Only show the positive activations
	im_cam = np.clip(im_cam, 0, im_cam.max())

	# Use the label that you want to visualize
	im_cam = im_cam[0, :, :, label]
	print('Info: Class map shape:', im_cam.shape)

	# Blur the map
	im_cam = ndimage.gaussian_filter(im_cam, sigma=(5), order=0)

	return im_cam
Example #31
0
    def max_depool(self,
                   in_layer=None,
                   depth_factor=2,
                   height_factor=2,
                   width_factor=2):
        if in_layer == None:
            in_layer = self.layer

        if len(self.layer.get_shape()) == 4:
            self.layer = kb.resize_images(self.layer, height_factor,
                                          width_factor, 'channels_last')
            print("Max Depool : {}".format(self.layer.get_shape()))
        if len(self.layer.get_shape()) == 5:
            self.layer = kb.resize_volumes(self.layer, depth_factor,
                                           height_factor, width_factor,
                                           'channels_last')
            print("Max Depool : {}".format(self.layer.get_shape()))
        return self.layer
Example #32
0
def pyramid_pooling_block(input_tensor, Bin_sizes):
    concat_list = [input_tensor]
    #w and h are size of input_tensor
    size = input_tensor.shape
    h = size[1]
    w = size[2]
    # mapping compatible bin_sizes
    factor = np.gcd(h, w)
    bin_sizes = [
        x if ((h % x == 0) and (w % x == 0)) else 0 for x in Bin_sizes
    ]
    bin_sizes = list(filter((0).__ne__, bin_sizes))
    if (1 not in bin_sizes):
        bin_sizes.insert(0, 1)
    ## TODO: need to add algo to add the next level compatible pyramid factor
    #bin_sizes.append(bin_sizes[-1]+factor)
    #while(len(bin_sizes)!=len(Bin_sizes)):

    for bin_size in bin_sizes:
        #TODO
        print("\n\n")
        print(size)
        print(w)
        print(h)
        print("\n\n")
        x = keras.layers.AveragePooling2D(
            pool_size=(h // bin_size, w // bin_size),
            strides=(h // bin_size, w // bin_size))(input_tensor)
        x = keras.layers.Conv2D(
            128,
            3,
            strides=1,
            padding='same',
            kernel_regularizer=keras.regularizers.l2(0.00004))(x)
        x = keras.layers.BatchNormalization()(x)
        x = ReLU()(x)
        x = keras.layers.Lambda(
            lambda x: K.resize_images(x, (h // x.shape[1]), (w // x.shape[2]),
                                      data_format='channels_last',
                                      interpolation='bilinear'))(x)

        concat_list.append(x)

    return keras.layers.concatenate(concat_list)
Example #33
0
def pyramid_pooling_block(input_tensor, bin_sizes):
    concat_list = [input_tensor]
    w = 32
    h = 32

    for bin_size in bin_sizes:
        x = keras.layers.AveragePooling2D(
            pool_size=(w // bin_size, h // bin_size),
            strides=(w // bin_size, h // bin_size))(input_tensor)
        x = keras.layers.Conv2D(128, kernel_size=3, strides=2,
                                padding='same')(x)
        x = keras.layers.Lambda(
            lambda x: K.resize_images(x, (h // x.shape[1]), (w // x.shape[2]),
                                      data_format='channels_last',
                                      interpolation='bilinear'))(x)

        concat_list.append(x)

    return keras.layers.concatenate(concat_list)
Example #34
0
 def _backward_pass(self, X, target_layer, d_switch, feat_map):
     # Run deconv/maxunpooling until input pixel space
     layer_index = self.lnames.index(target_layer)
     # Get the output of the target_layer of interest
     if layer_index == len(self.lnames)-1:
         print 'use none softmax activation'
         layer_output = K.function([self[self.lnames[0]].input,K.learning_phase()], K.dot(self[self.lnames[-2]].output,self[target_layer].W)+self[target_layer].b)
     else:
         layer_output = K.function([self[self.lnames[0]].input,K.learning_phase()], self[target_layer].output)
     X_outl = layer_output([X,1])
     # Special case for the starting layer where we may want
     # to switchoff somes maps/ activations
     softmax_offset = np.log((1.0/(1.0-SOFT_MAX_EPS)-1.0)/(X_outl.shape[1]-1))
     print "Deconvolving from %s..." % target_layer
     if feat_map is not None:
         print "Set other activation than channel %d to 0" % feat_map
         for i in range(X_outl.shape[1]):
             if i != feat_map:
                 if len(X_outl.shape)<4:
                     if layer_index == len(self.lnames)-1:
                         print 'use softmax offset',softmax_offset
                         X_outl[:,i] = -abs(softmax_offset)/2
                     #X_outl[:,i] = 0
                 else:
                     X_outl[:,i,:,:] = 0
             else:
                 #pass
                 if layer_index == len(self.lnames)-1:
                     print 'use softmax offset',softmax_offset
                     X_outl[:,i] = abs(softmax_offset)/2
                 
     #print X_outl[:,feat_map]
     #print X_outl[:,1-feat_map]
     # Iterate over layers (deepest to shallowest)
     batch_size = X_outl.shape[0]
     for lname in self.lnames[:layer_index+1][::-1]:
         print "Deconvolving %s..." % lname
         # Unpool, Deconv or do nothing; unflatten, see dense as conv
         if "flatten" in lname:
             ishape = self[lname].input_shape
             unflatten = K.function([self.flatX,K.learning_phase()], K.reshape(self.flatX, [batch_size]+[s for s in ishape[1:]]))
             X_outl = unflatten([X_outl,1])
         elif "maxpooling2d" in lname:
             p1, p2 = self[lname].pool_size
             uppool = K.function([self.x,self.mask,K.learning_phase()], K.resize_images(self.x, p1, p2, "th")*self.mask)
             X_outl = uppool([X_outl,d_switch[lname],1])
             #print d_switch[lname][0,feat_map,:,:]
             #print X_outl[0,feat_map,:,:]
         elif "convolution2d" in lname:
             X_outl = self._deconv(X_outl, lname)
         elif "padding" in lname:
             pass
         elif "dropout" in lname:
             pass
         elif "dense" in lname:
             X_outl = self._dedense(X_outl, lname, input_c = self.input_shape_withoutpadding[lname][1])
         else:
             raise ValueError(
                 "Invalid layer name: %s \n Can only handle maxpool and conv" % lname)
         print X_outl.shape
     return X_outl
Example #35
0
 def call(self, x, mask=None):
     # TODO: implement for dim_ordering='tf'
     img = K.resize_images(x, self.size[0], self.size[1], self.dim_ordering)
     padded = T.zeros((img.shape[0], img.shape[1], self.shape[0], self.shape[1]))
     padded = T.set_subtensor(padded[:, :, :img.shape[2], :img.shape[3]], img)
     return T.switch(self.ind, padded, T.zeros_like(padded))