def quadScene(quadsceneID): # this function is a little more complicated because it tries to take one of two possible shortcuts. # if there are clipped TIFFs, the previous work artifacts can safely no longer be there. # if the clipped TIFFs aren't there, look for unclipped TIFFs in tiffsStorage first. # if the unclipped TIFFs aren't there, the extractedTar "target" function will cause the tar to be downloaded sceneID=quadsceneID[:-2] if not(re.search(quadsceneID, ' '.join(glob.glob(os.path.join(LSF.projectStorage, '*'))))): # if the band files for quadsceneID in are not in projectStorage, get them from tiffsStorage, if possible, and clip them if not (re.search(sceneID, ' '.join(glob.glob(os.path.join(LSF.tiffsStorage, '*'))))): extractedTar(quadsceneID) quadPaths = rasterAnalysis_GDAL.cropToQuad(os.path.join(LSF.tiffsStorage, sceneID), LSF.projectStorage, LSF.quadsFolder) landsatFactTools_GDAL.writeQuadToDB(quadPaths) # get cloud cover percentage for each quad quadCCDict = landsatFactTools_GDAL.getQuadCCpercent(quadPaths) # ========================================================================= # write input scene quads cloud cover percentage to the landsat_metadata table in the database landsatFactTools_GDAL.writeQuadsCCtoDB(quadCCDict,os.path.join(LSF.tiffsStorage, sceneID)) # if the quad's been processed, should at least be a row in extracted_imagery # note if the row is missing else: resultRowExists = rowExists(quadsceneID, 'extracted_imagery', 'quad_scene') if resultRowExists == False: print "No row for {} in extracted_imagery".format(quadsceneID)
def cloudMask(date1, date2): # dateFns have completed therefore assume that, at least, the # quadscenes have been created in projectStorage # (i.e., sceneID1U*, sceneID1L*, sceneID2U*, and sceneID2L* directories are populuated) # eros_data may or may not be present # cloudMask dependencies are on files in tiffStorage, /lsfdata/eros_data/extractedTars/ outBasename = date1.sceneID + "_" + date2.sceneID + '_Fmask.tif' wrs2Name=date1.sceneID[3:9] if not os.path.exists(date1.folder+"/"+date1.sceneID+"_MTLFmask.TIF"): rasterAnalysis_GDAL.cloudMask(os.path.join(LSF.tiffsStorage, date1.sceneID[:-2])) # create quads from the input scene quadPaths = rasterAnalysis_GDAL.cropToQuad(os.path.join(LSF.tiffsStorage, date1.sceneID[:-2]), LSF.projectStorage, LSF.quadsFolder) landsatFactTools_GDAL.writeQuadToDB(quadPaths) # get cloud cover percentage for each quad quadCCDict = landsatFactTools_GDAL.getQuadCCpercent(quadPaths) # ========================================================================= # write input scene quads cloud cover percentage to the landsat_metadata table in the database landsatFactTools_GDAL.writeQuadsCCtoDB(quadCCDict,date1.folder.replace('UR','').replace('UL','').replace('LR','').replace('LL','')) if not os.path.exists(date2.folder+"/"+date2.sceneID+"_MTLFmask.TIF"): rasterAnalysis_GDAL.cloudMask(os.path.join(LSF.tiffsStorage, date2.sceneID[:-2])) # create quads from the input scene quadPaths = rasterAnalysis_GDAL.cropToQuad(os.path.join(LSF.tiffsStorage, date2.sceneID[:-2]), LSF.projectStorage, LSF.quadsFolder) landsatFactTools_GDAL.writeQuadToDB(quadPaths) # get cloud cover percentage for each quad quadCCDict = landsatFactTools_GDAL.getQuadCCpercent(quadPaths) # ========================================================================= # write input scene quads cloud cover percentage to the landsat_metadata table in the database landsatFactTools_GDAL.writeQuadsCCtoDB(quadCCDict,date1.folder.replace('UR','').replace('UL','').replace('LR','').replace('LL','')) outputTiffName=os.path.join(LSF.outFMASKfolder,outBasename) if not os.path.exists(outputTiffName): if os.path.exists(date1.folder+"/"+date1.sceneID+"_MTLFmask.TIF") and os.path.exists(date2.folder+"/"+date2.sceneID+"_MTLFmask.TIF"): qaTiffName=os.path.join(LSF.tiffsStorage, date1.sceneID[:-2], date1.sceneID[:-2]) + "_BQA.TIF" if os.path.exists(qaTiffName): cloud_mask_type='BQA' else: cloud_mask_type='FMASK' FmaskReclassedArray1 = date1.cloudMaskArray() FmaskReclassedArray2 = date2.cloudMaskArray() FmaskReclassedArray = FmaskReclassedArray1 * FmaskReclassedArray2 FmaskReclassedArrayPlus1 = FmaskReclassedArray + 1 shpName=os.path.join(LSF.quadsFolder, 'wrs2_'+ wrs2Name + date1.folder[-2:]+'.shp') LSFGeoTIFF.Unsigned8BitLSFGeoTIFF.fromArray(FmaskReclassedArrayPlus1, date1.geoTiffAtts).write(outputTiffName, shpName) landsatFactTools_GDAL.writeProductToDB(os.path.basename(outputTiffName),date1.sceneID,date2.sceneID,'CLOUD',date2.sceneID[9:16], 'CR',cloud_mask_type) # if the product's been created, should be a row in products # note if the row is missing else: resultRowExists = rowExists(outBasename, 'products', 'product_id') if resultRowExists == False: print "No row for {} in products".format(outBasename)
# rasterAnalysis_GDAL.runFmask(extractedPath,Fmaskexe) #BM's original print extractedPath rasterAnalysis_GDAL.runFmask(extractedPath,fmaskShellCall) # get DN min number from each band in the scene and write to database dnminExists = landsatFactTools_GDAL.checkForDNminExist(extractedPath) # May not be needed in final design, used during testing if dnminExists == False: dnMinDict = rasterAnalysis_GDAL.getDNmin(extractedPath) landsatFactTools_GDAL.writeDNminToDB(dnMinDict,extractedPath) # create quads from the input scene quadPaths = rasterAnalysis_GDAL.cropToQuad(extractedPath,quadsFolder) landsatFactTools_GDAL.writeQuadToDB(quadPaths) # get cloud cover percentage for each quad quadCCDict = landsatFactTools_GDAL.getQuadCCpercent(quadPaths) # ========================================================================= # write input scene quads cloud cover percentage to the landsat_metadata table in the database landsatFactTools_GDAL.writeQuadsCCtoDB(quadCCDict,extractedPath) # for each quad this finds the closest scene that passes the cloud cover threshold for processing quadTiffList2Process = landsatFactTools_GDAL.getNextBestQuad(quadCCDict,cloudCoverThreshold) # ========================================================================= #print "quadTiffList2Process: ", quadTiffList2Process # checks the list of quads, if 0 then there were no quads under the cloud cover threshold # so there is nothing to process for that scene if len(quadTiffList2Process) > 0: #print "quadTiffList2Process: ", quadTiffList2Process # for each quad pair perform the change analysis for compareList in quadTiffList2Process: pathList = [os.path.join(tiffsStorage,compareList[0]), os.path.join(tiffsStorage,compareList[1])] # ========================================================================= # sets the scenes in order tifPathList = pathList #print "tifPathList: ", tifPathList