def build_lems_for_model(src):
    model = lems.Model()

    model.add(lems.Dimension('time', t=1))
    # model.add(lems.Dimension('au'))

    # primary element of the model is a mass model component
    mass = lems.ComponentType(src.name, extends="baseCellMembPot")
    model.add(mass)
    
    ######### Adding v is required to ease mapping to NEURON...
    mass.dynamics.add(lems.StateVariable(name="v", dimension="voltage", exposure="v"))
    
    mass.add(lems.Attachments(name="synapses",type_="basePointCurrentDL"))
    

    for input in src.input:
        mass.dynamics.add(lems.DerivedVariable(name=input, 
                                               dimension='none',
                                               exposure=input,
                                               select='synapses[*]/I',
                                               reduce='add'))
        mass.add(lems.Exposure(input, 'none'))
        
        
    for key, val in src.const.items():
        mass.add(lems.Parameter(key, 'none'))  # TODO units
        
    
        
    mass.add(lems.Constant(name="MSEC", dimension="time", value="1ms"))
    mass.add(lems.Constant(name="PI", dimension="none", value="3.14159265359"))

    states = []
    der_vars = []
    # for key in src.param:
    #     mass.add(lems.Parameter(key, 'au'))  # TODO units

    for key, val in src.auxex:
        val = val.replace('**', '^')
        mass.dynamics.add(lems.DerivedVariable(key, value=val))

    for key in src.obsrv:
        name_dv = key.replace('(','_').replace(')','').replace(' - ','_min_')
        mass.dynamics.add(lems.DerivedVariable(name_dv, value=key, exposure=name_dv))
        mass.add(lems.Exposure(name_dv, 'none'))

    for src_svar in src.state_space:
        name = src_svar.name
        ddt = src_svar.drift.replace('**', '^')
        mass.dynamics.add(lems.StateVariable(name, 'none', name))
        mass.dynamics.add(lems.TimeDerivative(name, '(%s)/MSEC'%ddt))
        mass.add(lems.Exposure(name, 'none'))
        
    ''' On condition is not need on the model but NeuroML requires its definition -->
            <OnCondition test="r .lt. 0">
                <EventOut port="spike"/>
            </OnCondition>'''
            
    oc = lems.OnCondition(test='v .gt. 0')
    oc.actions.append(lems.EventOut(port='spike'))
    mass.dynamics.add(oc)

    return model
def channelpedia_xml_to_neuroml2(cpd_xml, nml2_file_name, unknowns=""):


    info = 'Automatic conversion of Channelpedia XML file to NeuroML2\n'+\
           'Uses: https://github.com/OpenSourceBrain/BlueBrainProjectShowcase/blob/master/Channelpedia/ChannelpediaToNeuroML2.py'
    print(info)

    root = ET.fromstring(cpd_xml)

    channel_id = 'Channelpedia_%s_%s' % (root.attrib['ModelName'].replace(
        "/", "_").replace(" ", "_").replace(".", "_"), root.attrib['ModelID'])

    doc = neuroml.NeuroMLDocument()

    metadata = osb.metadata.RDF(info)

    ion = root.findall('Ion')[0]
    chan = neuroml.IonChannelHH(
        id=channel_id,
        conductance='10pS',
        species=ion.attrib['Name'],
        notes=
        "This is an automated conversion to NeuroML 2 of an ion channel model from Channelpedia. "
        +
        "\nThe original channel model file can be found at: http://channelpedia.epfl.ch/ionchannels/%s"
        % root.attrib['ID'] +
        "\n\nConversion scripts at https://github.com/OpenSourceBrain/BlueBrainProjectShowcase"
    )

    chan.annotation = neuroml.Annotation()

    model_url_template = 'http://channelpedia.epfl.ch/ionchannels/%s/hhmodels/%s.xml'
    desc = osb.metadata.Description(channel_id)
    metadata.descriptions.append(desc)
    osb.metadata.add_simple_qualifier(desc, \
                                      'bqmodel', \
                                      'isDerivedFrom', \
                                      model_url_template%(root.attrib['ID'], root.attrib['ModelID']), \
                                      "Channelpedia channel ID: %s, ModelID: %s; direct link to original XML model" % (root.attrib['ID'], root.attrib['ModelID']))

    channel_url_template = 'http://channelpedia.epfl.ch/ionchannels/%s'
    osb.metadata.add_simple_qualifier(desc, \
                                      'bqmodel', \
                                      'isDescribedBy', \
                                      channel_url_template%(root.attrib['ID']), \
                                      "Channelpedia channel ID: %s; link to main page for channel" % (root.attrib['ID']))

    for reference in root.findall('Reference'):
        pmid = reference.attrib['PubmedID']
        #metadata = update_metadata(chan, metadata, channel_id, "http://identifiers.org/pubmed/%s"%pmid)
        ref_info = reference.text
        osb.metadata.add_simple_qualifier(desc, \
                                          'bqmodel', \
                                          'isDescribedBy', \
                                          osb.resources.PUBMED_URL_TEMPLATE % (pmid), \
                                          ("PubMed ID: %s is referenced in original XML\n"+\
                                          "                                 %s") % (pmid, ref_info))

    for environment in root.findall('Environment'):
        for animal in environment.findall('Animal'):

            species = animal.attrib['Name'].lower()

            if species:
                if species in osb.resources.KNOWN_SPECIES:
                    known_id = osb.resources.KNOWN_SPECIES[species]
                    osb.metadata.add_simple_qualifier(desc, \
                                                      'bqbiol', \
                                                      'hasTaxon', \
                                                      osb.resources.NCBI_TAXONOMY_URL_TEMPLATE % known_id, \
                                                      "Known species: %s; taxonomy id: %s" % (species, known_id))
                else:
                    print("Unknown species: %s" % species)
                    unknowns += "Unknown species: %s\n" % species

        for cell_type_el in environment.findall('CellType'):
            cell_type = cell_type_el.text.strip().lower()

            if cell_type:
                if cell_type in osb.resources.KNOWN_CELL_TYPES:
                    known_id = osb.resources.KNOWN_CELL_TYPES[cell_type]
                    osb.metadata.add_simple_qualifier(desc, \
                                                      'bqbiol', \
                                                      'isPartOf', \
                                                      osb.resources.NEUROLEX_URL_TEMPLATE % known_id, \
                                                      "Known cell type: %s; taxonomy id: %s" % (cell_type, known_id))
                else:
                    print("Unknown cell_type: %s" % cell_type)
                    unknowns += "Unknown cell_type: %s\n" % cell_type

    print("Currently unknown: <<<%s>>>" % unknowns)

    comp_types = {}
    for gate in root.findall('Gates'):

        eq_type = gate.attrib['EqType']
        gate_name = gate.attrib['Name']
        target = chan.gates

        if eq_type == '1':
            g = neuroml.GateHHUndetermined(id=gate_name,
                                           type='gateHHtauInf',
                                           instances=int(
                                               float(gate.attrib['Power'])))
        elif eq_type == '2':
            g = neuroml.GateHHUndetermined(id=gate_name,
                                           type='gateHHrates',
                                           instances=int(
                                               float(gate.attrib['Power'])))

        for inf in gate.findall('Inf_Alpha'):
            equation = check_equation(inf.findall('Equation')[0].text)

            if eq_type == '1':
                new_comp_type = "%s_%s_%s" % (channel_id, gate_name, 'inf')
                g.steady_state = neuroml.HHVariable(type=new_comp_type)

                comp_type = lems.ComponentType(
                    new_comp_type, extends="baseVoltageDepVariable")

                comp_type.add(lems.Constant('TIME_SCALE', '1 ms', 'time'))
                comp_type.add(lems.Constant('VOLT_SCALE', '1 mV', 'voltage'))

                comp_type.dynamics.add(
                    lems.DerivedVariable(name='V',
                                         dimension="none",
                                         value="v / VOLT_SCALE"))
                comp_type.dynamics.add(
                    lems.DerivedVariable(name='x',
                                         dimension="none",
                                         value="%s" % equation,
                                         exposure="x"))

                comp_types[new_comp_type] = comp_type

            elif eq_type == '2':
                new_comp_type = "%s_%s_%s" % (channel_id, gate_name, 'alpha')
                g.forward_rate = neuroml.HHRate(type=new_comp_type)

                comp_type = lems.ComponentType(new_comp_type,
                                               extends="baseVoltageDepRate")

                comp_type.add(lems.Constant('TIME_SCALE', '1 ms', 'time'))
                comp_type.add(lems.Constant('VOLT_SCALE', '1 mV', 'voltage'))

                comp_type.dynamics.add(
                    lems.DerivedVariable(name='V',
                                         dimension="none",
                                         value="v / VOLT_SCALE"))
                comp_type.dynamics.add(
                    lems.DerivedVariable(name='r',
                                         dimension="per_time",
                                         value="%s / TIME_SCALE" % equation,
                                         exposure="r"))

                comp_types[new_comp_type] = comp_type

        for tau in gate.findall('Tau_Beta'):
            equation = check_equation(tau.findall('Equation')[0].text)

            if eq_type == '1':
                new_comp_type = "%s_%s_tau" % (channel_id, gate_name)
                g.time_course = neuroml.HHTime(type=new_comp_type)

                comp_type = lems.ComponentType(new_comp_type,
                                               extends="baseVoltageDepTime")

                comp_type.add(lems.Constant('TIME_SCALE', '1 ms', 'time'))
                comp_type.add(lems.Constant('VOLT_SCALE', '1 mV', 'voltage'))

                comp_type.dynamics.add(
                    lems.DerivedVariable(name='V',
                                         dimension="none",
                                         value="v / VOLT_SCALE"))
                comp_type.dynamics.add(
                    lems.DerivedVariable(name='t',
                                         dimension="time",
                                         value="(%s) * TIME_SCALE" % equation,
                                         exposure="t"))

                comp_types[new_comp_type] = comp_type

            elif eq_type == '2':
                new_comp_type = "%s_%s_%s" % (channel_id, gate_name, 'beta')
                g.reverse_rate = neuroml.HHRate(type=new_comp_type)

                comp_type = lems.ComponentType(new_comp_type,
                                               extends="baseVoltageDepRate")

                comp_type.add(lems.Constant('TIME_SCALE', '1 ms', 'time'))
                comp_type.add(lems.Constant('VOLT_SCALE', '1 mV', 'voltage'))

                comp_type.dynamics.add(
                    lems.DerivedVariable(name='V',
                                         dimension="none",
                                         value="v / VOLT_SCALE"))
                comp_type.dynamics.add(
                    lems.DerivedVariable(name='r',
                                         dimension="per_time",
                                         value="%s  / TIME_SCALE" % equation,
                                         exposure="r"))

                comp_types[new_comp_type] = comp_type

        target.append(g)

    doc.ion_channel_hhs.append(chan)

    doc.id = channel_id

    writers.NeuroMLWriter.write(doc, nml2_file_name)

    print("Written NeuroML 2 channel file to: " + nml2_file_name)

    for comp_type_name in comp_types.keys():
        comp_type = comp_types[comp_type_name]
        ct_xml = comp_type.toxml()

        # Quick & dirty pretty printing..
        ct_xml = ct_xml.replace('<Const', '\n        <Const')
        ct_xml = ct_xml.replace('<Dyna', '\n        <Dyna')
        ct_xml = ct_xml.replace('</Dyna', '\n        </Dyna')
        ct_xml = ct_xml.replace('<Deriv', '\n            <Deriv')
        ct_xml = ct_xml.replace('</Compone', '\n    </Compone')

        # print("Adding definition for %s:\n%s\n"%(comp_type_name, ct_xml))
        nml2_file = open(nml2_file_name, 'r')
        orig = nml2_file.read()
        new_contents = orig.replace("</neuroml>",
                                    "\n    %s\n\n</neuroml>" % ct_xml)
        nml2_file.close()
        nml2_file = open(nml2_file_name, 'w')
        nml2_file.write(new_contents)
        nml2_file.close()

    print("Inserting metadata...")
    nml2_file = open(nml2_file_name, 'r')
    orig = nml2_file.read()
    new_contents = orig.replace(
        "<annotation/>", "\n        <annotation>\n%s        </annotation>\n" %
        metadata.to_xml("            "))
    nml2_file.close()
    nml2_file = open(nml2_file_name, 'w')
    nml2_file.write(new_contents)
    nml2_file.close()

    ###### Validate the NeuroML ######

    from neuroml.utils import validate_neuroml2

    validate_neuroml2(nml2_file_name)

    return unknowns
Example #3
0
model.add(lems.Unit('milliSecond', 'ms', 'time', -3))
model.add(lems.Unit('microFarad', 'uF', 'capacitance', -12))

iaf1 = lems.ComponentType('iaf1')
model.add(iaf1)

iaf1.add(lems.Parameter('threshold', 'voltage'))
iaf1.add(lems.Parameter('reset', 'voltage'))
iaf1.add(lems.Parameter('refractoryPeriod', 'time'))
iaf1.add(lems.Parameter('capacitance', 'capacitance'))
iaf1.add(lems.Exposure('vexp', 'voltage'))
dp = lems.DerivedParameter('range', 'threshold - reset', 'voltage')
iaf1.add(dp)

iaf1.dynamics.add(lems.StateVariable('v','voltage', 'vexp')) 
iaf1.dynamics.add(lems.DerivedVariable('v2',dimension='voltage', value='v*2'))
cdv = lems.ConditionalDerivedVariable('v_abs','voltage')
cdv.add(lems.Case('v .geq. 0','v'))
cdv.add(lems.Case('v .lt. 0','-1*v'))
iaf1.dynamics.add(cdv)


model.add(lems.Component('celltype_a', iaf1.name))
model.add(lems.Component('celltype_b', iaf1.name, threshold="20mV"))

fn = '/tmp/model.xml'
model.export_to_file(fn)

print("----------------------------------------------")
print(open(fn,'r').read())
print("----------------------------------------------")
Example #4
0
def mdf_to_neuroml(graph, save_to=None, format=None, run_duration_sec=2):

    print("Converting graph: %s to NeuroML" % (graph.id))

    net = neuromllite.Network(id=graph.id)
    net.notes = "NeuroMLlite export of {} graph: {}".format(
        format if format else "MDF",
        graph.id,
    )

    model = lems.Model()
    lems_definitions = "%s_lems_definitions.xml" % graph.id

    for node in graph.nodes:
        print("    Node: %s" % node.id)

        node_comp_type = "%s__definition" % node.id
        node_comp = "%s__instance" % node.id

        # Create the ComponentType which defines behaviour of the general class
        ct = lems.ComponentType(node_comp_type, extends="baseCellMembPotDL")
        ct.add(lems.Attachments("only_input_port", "basePointCurrentDL"))
        ct.dynamics.add(
            lems.DerivedVariable(name="V",
                                 dimension="none",
                                 value="0",
                                 exposure="V"))
        model.add(ct)

        # Define the Component - an instance of the ComponentType
        comp = lems.Component(node_comp, node_comp_type)
        model.add(comp)

        cell = neuromllite.Cell(id=node_comp,
                                lems_source_file=lems_definitions)
        net.cells.append(cell)

        pop = neuromllite.Population(
            id=node.id,
            size=1,
            component=cell.id,
            properties={
                "color": "0.2 0.2 0.2",
                "radius": 3
            },
        )
        net.populations.append(pop)

        if len(node.input_ports) > 1:
            raise Exception(
                "Currently only max 1 input port supported in NeuroML...")

        for ip in node.input_ports:
            ct.add(lems.Exposure(ip.id, "none"))
            ct.dynamics.add(
                lems.DerivedVariable(
                    name=ip.id,
                    dimension="none",
                    select="only_input_port[*]/I",
                    reduce="add",
                    exposure=ip.id,
                ))

        on_start = None

        for p in node.parameters:
            print("Converting %s" % p)
            if p.value is not None:
                try:
                    v_num = float(p.value)
                    ct.add(lems.Parameter(p.id, "none"))
                    comp.parameters[p.id] = v_num
                    print(comp.parameters[p.id])
                except Exception as e:

                    ct.add(lems.Exposure(p.id, "none"))
                    dv = lems.DerivedVariable(
                        name=p.id,
                        dimension="none",
                        value="%s" % (p.value),
                        exposure=p.id,
                    )
                    ct.dynamics.add(dv)

            elif p.function is not None:
                ct.add(lems.Exposure(p.id, "none"))
                func_info = mdf_functions[p.function]
                expr = func_info["expression_string"]
                expr2 = substitute_args(expr, p.args)
                for arg in p.args:
                    expr += ";{}={}".format(arg, p.args[arg])
                dv = lems.DerivedVariable(name=p.id,
                                          dimension="none",
                                          value="%s" % (expr2),
                                          exposure=p.id)
                ct.dynamics.add(dv)
            else:
                ct.add(lems.Exposure(p.id, "none"))
                ct.dynamics.add(
                    lems.StateVariable(name=p.id,
                                       dimension="none",
                                       exposure=p.id))
                if p.default_initial_value:
                    if on_start is None:
                        on_start = lems.OnStart()
                        ct.dynamics.add(on_start)
                    sa = lems.StateAssignment(
                        variable=p.id,
                        value=str(evaluate_expr(p.default_initial_value)))
                    on_start.actions.append(sa)

                if p.time_derivative:
                    td = lems.TimeDerivative(variable=p.id,
                                             value=p.time_derivative)
                    ct.dynamics.add(td)

        if len(node.output_ports) > 1:
            raise Exception(
                "Currently only max 1 output port supported in NeuroML...")

        for op in node.output_ports:
            ct.add(lems.Exposure(op.id, "none"))
            ct.dynamics.add(
                lems.DerivedVariable(name=op.id,
                                     dimension="none",
                                     value=op.value,
                                     exposure=op.id))
            only_output_port = "only_output_port"
            ct.add(lems.Exposure(only_output_port, "none"))
            ct.dynamics.add(
                lems.DerivedVariable(
                    name=only_output_port,
                    dimension="none",
                    value=op.id,
                    exposure=only_output_port,
                ))

    if len(graph.edges) > 0:

        model.add(
            lems.Include(
                os.path.join(os.path.dirname(__file__),
                             "syn_definitions.xml")))
        rsDL = neuromllite.Synapse(id="rsDL",
                                   lems_source_file=lems_definitions)
        net.synapses.append(rsDL)
        # syn_id = 'silentSyn'
        # silentSynDL = neuromllite.Synapse(id=syn_id, lems_source_file=lems_definitions)

    for edge in graph.edges:
        print(f"    Edge: {edge.id} connects {edge.sender} to {edge.receiver}")

        ssyn_id = "silentSyn_proj_%s" % edge.id
        ssyn_id = "silentSyn_proj_%s" % edge.id
        # ssyn_id = 'silentSynX'
        silentDLin = neuromllite.Synapse(id=ssyn_id,
                                         lems_source_file=lems_definitions)

        model.add(lems.Component(ssyn_id, "silentRateSynapseDL"))

        net.synapses.append(silentDLin)

        net.projections.append(
            neuromllite.Projection(
                id="proj_%s" % edge.id,
                presynaptic=edge.sender,
                postsynaptic=edge.receiver,
                synapse=rsDL.id,
                pre_synapse=silentDLin.id,
                type="continuousProjection",
                weight=1,
                random_connectivity=neuromllite.RandomConnectivity(
                    probability=1),
            ))

    # Much more todo...
    model.export_to_file(lems_definitions)

    print("Nml net: %s" % net)
    if save_to:
        new_file = net.to_json_file(save_to)
        print("Saved NML to: %s" % save_to)

    ################################################################################
    ###   Build Simulation object & save as JSON

    simtime = 1000 * run_duration_sec
    dt = 0.1
    sim = neuromllite.Simulation(
        id="Sim%s" % net.id,
        network=new_file,
        duration=simtime,
        dt=dt,
        seed=123,
        recordVariables={"OUTPUT": {
            "all": "*"
        }},
    )

    recordVariables = {}
    for node in graph.nodes:
        for ip in node.input_ports:
            if not ip.id in recordVariables:
                recordVariables[ip.id] = {}
            recordVariables[ip.id][node.id] = 0

        for p in node.parameters:
            if p.is_stateful():
                if not p.id in recordVariables:
                    recordVariables[p.id] = {}
                recordVariables[p.id][node.id] = 0

        for op in node.output_ports:
            if not op.id in recordVariables:
                recordVariables[op.id] = {}
            recordVariables[op.id][node.id] = 0

    sim.recordVariables = recordVariables
    if save_to:
        sf = sim.to_json_file()

        print("Saved Simulation to: %s" % sf)

    return net, sim