def build_lems_for_model(src): model = lems.Model() model.add(lems.Dimension('time', t=1)) # model.add(lems.Dimension('au')) # primary element of the model is a mass model component mass = lems.ComponentType(src.name, extends="baseCellMembPot") model.add(mass) ######### Adding v is required to ease mapping to NEURON... mass.dynamics.add(lems.StateVariable(name="v", dimension="voltage", exposure="v")) mass.add(lems.Attachments(name="synapses",type_="basePointCurrentDL")) for input in src.input: mass.dynamics.add(lems.DerivedVariable(name=input, dimension='none', exposure=input, select='synapses[*]/I', reduce='add')) mass.add(lems.Exposure(input, 'none')) for key, val in src.const.items(): mass.add(lems.Parameter(key, 'none')) # TODO units mass.add(lems.Constant(name="MSEC", dimension="time", value="1ms")) mass.add(lems.Constant(name="PI", dimension="none", value="3.14159265359")) states = [] der_vars = [] # for key in src.param: # mass.add(lems.Parameter(key, 'au')) # TODO units for key, val in src.auxex: val = val.replace('**', '^') mass.dynamics.add(lems.DerivedVariable(key, value=val)) for key in src.obsrv: name_dv = key.replace('(','_').replace(')','').replace(' - ','_min_') mass.dynamics.add(lems.DerivedVariable(name_dv, value=key, exposure=name_dv)) mass.add(lems.Exposure(name_dv, 'none')) for src_svar in src.state_space: name = src_svar.name ddt = src_svar.drift.replace('**', '^') mass.dynamics.add(lems.StateVariable(name, 'none', name)) mass.dynamics.add(lems.TimeDerivative(name, '(%s)/MSEC'%ddt)) mass.add(lems.Exposure(name, 'none')) ''' On condition is not need on the model but NeuroML requires its definition --> <OnCondition test="r .lt. 0"> <EventOut port="spike"/> </OnCondition>''' oc = lems.OnCondition(test='v .gt. 0') oc.actions.append(lems.EventOut(port='spike')) mass.dynamics.add(oc) return model
def channelpedia_xml_to_neuroml2(cpd_xml, nml2_file_name, unknowns=""): info = 'Automatic conversion of Channelpedia XML file to NeuroML2\n'+\ 'Uses: https://github.com/OpenSourceBrain/BlueBrainProjectShowcase/blob/master/Channelpedia/ChannelpediaToNeuroML2.py' print(info) root = ET.fromstring(cpd_xml) channel_id = 'Channelpedia_%s_%s' % (root.attrib['ModelName'].replace( "/", "_").replace(" ", "_").replace(".", "_"), root.attrib['ModelID']) doc = neuroml.NeuroMLDocument() metadata = osb.metadata.RDF(info) ion = root.findall('Ion')[0] chan = neuroml.IonChannelHH( id=channel_id, conductance='10pS', species=ion.attrib['Name'], notes= "This is an automated conversion to NeuroML 2 of an ion channel model from Channelpedia. " + "\nThe original channel model file can be found at: http://channelpedia.epfl.ch/ionchannels/%s" % root.attrib['ID'] + "\n\nConversion scripts at https://github.com/OpenSourceBrain/BlueBrainProjectShowcase" ) chan.annotation = neuroml.Annotation() model_url_template = 'http://channelpedia.epfl.ch/ionchannels/%s/hhmodels/%s.xml' desc = osb.metadata.Description(channel_id) metadata.descriptions.append(desc) osb.metadata.add_simple_qualifier(desc, \ 'bqmodel', \ 'isDerivedFrom', \ model_url_template%(root.attrib['ID'], root.attrib['ModelID']), \ "Channelpedia channel ID: %s, ModelID: %s; direct link to original XML model" % (root.attrib['ID'], root.attrib['ModelID'])) channel_url_template = 'http://channelpedia.epfl.ch/ionchannels/%s' osb.metadata.add_simple_qualifier(desc, \ 'bqmodel', \ 'isDescribedBy', \ channel_url_template%(root.attrib['ID']), \ "Channelpedia channel ID: %s; link to main page for channel" % (root.attrib['ID'])) for reference in root.findall('Reference'): pmid = reference.attrib['PubmedID'] #metadata = update_metadata(chan, metadata, channel_id, "http://identifiers.org/pubmed/%s"%pmid) ref_info = reference.text osb.metadata.add_simple_qualifier(desc, \ 'bqmodel', \ 'isDescribedBy', \ osb.resources.PUBMED_URL_TEMPLATE % (pmid), \ ("PubMed ID: %s is referenced in original XML\n"+\ " %s") % (pmid, ref_info)) for environment in root.findall('Environment'): for animal in environment.findall('Animal'): species = animal.attrib['Name'].lower() if species: if species in osb.resources.KNOWN_SPECIES: known_id = osb.resources.KNOWN_SPECIES[species] osb.metadata.add_simple_qualifier(desc, \ 'bqbiol', \ 'hasTaxon', \ osb.resources.NCBI_TAXONOMY_URL_TEMPLATE % known_id, \ "Known species: %s; taxonomy id: %s" % (species, known_id)) else: print("Unknown species: %s" % species) unknowns += "Unknown species: %s\n" % species for cell_type_el in environment.findall('CellType'): cell_type = cell_type_el.text.strip().lower() if cell_type: if cell_type in osb.resources.KNOWN_CELL_TYPES: known_id = osb.resources.KNOWN_CELL_TYPES[cell_type] osb.metadata.add_simple_qualifier(desc, \ 'bqbiol', \ 'isPartOf', \ osb.resources.NEUROLEX_URL_TEMPLATE % known_id, \ "Known cell type: %s; taxonomy id: %s" % (cell_type, known_id)) else: print("Unknown cell_type: %s" % cell_type) unknowns += "Unknown cell_type: %s\n" % cell_type print("Currently unknown: <<<%s>>>" % unknowns) comp_types = {} for gate in root.findall('Gates'): eq_type = gate.attrib['EqType'] gate_name = gate.attrib['Name'] target = chan.gates if eq_type == '1': g = neuroml.GateHHUndetermined(id=gate_name, type='gateHHtauInf', instances=int( float(gate.attrib['Power']))) elif eq_type == '2': g = neuroml.GateHHUndetermined(id=gate_name, type='gateHHrates', instances=int( float(gate.attrib['Power']))) for inf in gate.findall('Inf_Alpha'): equation = check_equation(inf.findall('Equation')[0].text) if eq_type == '1': new_comp_type = "%s_%s_%s" % (channel_id, gate_name, 'inf') g.steady_state = neuroml.HHVariable(type=new_comp_type) comp_type = lems.ComponentType( new_comp_type, extends="baseVoltageDepVariable") comp_type.add(lems.Constant('TIME_SCALE', '1 ms', 'time')) comp_type.add(lems.Constant('VOLT_SCALE', '1 mV', 'voltage')) comp_type.dynamics.add( lems.DerivedVariable(name='V', dimension="none", value="v / VOLT_SCALE")) comp_type.dynamics.add( lems.DerivedVariable(name='x', dimension="none", value="%s" % equation, exposure="x")) comp_types[new_comp_type] = comp_type elif eq_type == '2': new_comp_type = "%s_%s_%s" % (channel_id, gate_name, 'alpha') g.forward_rate = neuroml.HHRate(type=new_comp_type) comp_type = lems.ComponentType(new_comp_type, extends="baseVoltageDepRate") comp_type.add(lems.Constant('TIME_SCALE', '1 ms', 'time')) comp_type.add(lems.Constant('VOLT_SCALE', '1 mV', 'voltage')) comp_type.dynamics.add( lems.DerivedVariable(name='V', dimension="none", value="v / VOLT_SCALE")) comp_type.dynamics.add( lems.DerivedVariable(name='r', dimension="per_time", value="%s / TIME_SCALE" % equation, exposure="r")) comp_types[new_comp_type] = comp_type for tau in gate.findall('Tau_Beta'): equation = check_equation(tau.findall('Equation')[0].text) if eq_type == '1': new_comp_type = "%s_%s_tau" % (channel_id, gate_name) g.time_course = neuroml.HHTime(type=new_comp_type) comp_type = lems.ComponentType(new_comp_type, extends="baseVoltageDepTime") comp_type.add(lems.Constant('TIME_SCALE', '1 ms', 'time')) comp_type.add(lems.Constant('VOLT_SCALE', '1 mV', 'voltage')) comp_type.dynamics.add( lems.DerivedVariable(name='V', dimension="none", value="v / VOLT_SCALE")) comp_type.dynamics.add( lems.DerivedVariable(name='t', dimension="time", value="(%s) * TIME_SCALE" % equation, exposure="t")) comp_types[new_comp_type] = comp_type elif eq_type == '2': new_comp_type = "%s_%s_%s" % (channel_id, gate_name, 'beta') g.reverse_rate = neuroml.HHRate(type=new_comp_type) comp_type = lems.ComponentType(new_comp_type, extends="baseVoltageDepRate") comp_type.add(lems.Constant('TIME_SCALE', '1 ms', 'time')) comp_type.add(lems.Constant('VOLT_SCALE', '1 mV', 'voltage')) comp_type.dynamics.add( lems.DerivedVariable(name='V', dimension="none", value="v / VOLT_SCALE")) comp_type.dynamics.add( lems.DerivedVariable(name='r', dimension="per_time", value="%s / TIME_SCALE" % equation, exposure="r")) comp_types[new_comp_type] = comp_type target.append(g) doc.ion_channel_hhs.append(chan) doc.id = channel_id writers.NeuroMLWriter.write(doc, nml2_file_name) print("Written NeuroML 2 channel file to: " + nml2_file_name) for comp_type_name in comp_types.keys(): comp_type = comp_types[comp_type_name] ct_xml = comp_type.toxml() # Quick & dirty pretty printing.. ct_xml = ct_xml.replace('<Const', '\n <Const') ct_xml = ct_xml.replace('<Dyna', '\n <Dyna') ct_xml = ct_xml.replace('</Dyna', '\n </Dyna') ct_xml = ct_xml.replace('<Deriv', '\n <Deriv') ct_xml = ct_xml.replace('</Compone', '\n </Compone') # print("Adding definition for %s:\n%s\n"%(comp_type_name, ct_xml)) nml2_file = open(nml2_file_name, 'r') orig = nml2_file.read() new_contents = orig.replace("</neuroml>", "\n %s\n\n</neuroml>" % ct_xml) nml2_file.close() nml2_file = open(nml2_file_name, 'w') nml2_file.write(new_contents) nml2_file.close() print("Inserting metadata...") nml2_file = open(nml2_file_name, 'r') orig = nml2_file.read() new_contents = orig.replace( "<annotation/>", "\n <annotation>\n%s </annotation>\n" % metadata.to_xml(" ")) nml2_file.close() nml2_file = open(nml2_file_name, 'w') nml2_file.write(new_contents) nml2_file.close() ###### Validate the NeuroML ###### from neuroml.utils import validate_neuroml2 validate_neuroml2(nml2_file_name) return unknowns
model.add(lems.Unit('milliSecond', 'ms', 'time', -3)) model.add(lems.Unit('microFarad', 'uF', 'capacitance', -12)) iaf1 = lems.ComponentType('iaf1') model.add(iaf1) iaf1.add(lems.Parameter('threshold', 'voltage')) iaf1.add(lems.Parameter('reset', 'voltage')) iaf1.add(lems.Parameter('refractoryPeriod', 'time')) iaf1.add(lems.Parameter('capacitance', 'capacitance')) iaf1.add(lems.Exposure('vexp', 'voltage')) dp = lems.DerivedParameter('range', 'threshold - reset', 'voltage') iaf1.add(dp) iaf1.dynamics.add(lems.StateVariable('v','voltage', 'vexp')) iaf1.dynamics.add(lems.DerivedVariable('v2',dimension='voltage', value='v*2')) cdv = lems.ConditionalDerivedVariable('v_abs','voltage') cdv.add(lems.Case('v .geq. 0','v')) cdv.add(lems.Case('v .lt. 0','-1*v')) iaf1.dynamics.add(cdv) model.add(lems.Component('celltype_a', iaf1.name)) model.add(lems.Component('celltype_b', iaf1.name, threshold="20mV")) fn = '/tmp/model.xml' model.export_to_file(fn) print("----------------------------------------------") print(open(fn,'r').read()) print("----------------------------------------------")
def mdf_to_neuroml(graph, save_to=None, format=None, run_duration_sec=2): print("Converting graph: %s to NeuroML" % (graph.id)) net = neuromllite.Network(id=graph.id) net.notes = "NeuroMLlite export of {} graph: {}".format( format if format else "MDF", graph.id, ) model = lems.Model() lems_definitions = "%s_lems_definitions.xml" % graph.id for node in graph.nodes: print(" Node: %s" % node.id) node_comp_type = "%s__definition" % node.id node_comp = "%s__instance" % node.id # Create the ComponentType which defines behaviour of the general class ct = lems.ComponentType(node_comp_type, extends="baseCellMembPotDL") ct.add(lems.Attachments("only_input_port", "basePointCurrentDL")) ct.dynamics.add( lems.DerivedVariable(name="V", dimension="none", value="0", exposure="V")) model.add(ct) # Define the Component - an instance of the ComponentType comp = lems.Component(node_comp, node_comp_type) model.add(comp) cell = neuromllite.Cell(id=node_comp, lems_source_file=lems_definitions) net.cells.append(cell) pop = neuromllite.Population( id=node.id, size=1, component=cell.id, properties={ "color": "0.2 0.2 0.2", "radius": 3 }, ) net.populations.append(pop) if len(node.input_ports) > 1: raise Exception( "Currently only max 1 input port supported in NeuroML...") for ip in node.input_ports: ct.add(lems.Exposure(ip.id, "none")) ct.dynamics.add( lems.DerivedVariable( name=ip.id, dimension="none", select="only_input_port[*]/I", reduce="add", exposure=ip.id, )) on_start = None for p in node.parameters: print("Converting %s" % p) if p.value is not None: try: v_num = float(p.value) ct.add(lems.Parameter(p.id, "none")) comp.parameters[p.id] = v_num print(comp.parameters[p.id]) except Exception as e: ct.add(lems.Exposure(p.id, "none")) dv = lems.DerivedVariable( name=p.id, dimension="none", value="%s" % (p.value), exposure=p.id, ) ct.dynamics.add(dv) elif p.function is not None: ct.add(lems.Exposure(p.id, "none")) func_info = mdf_functions[p.function] expr = func_info["expression_string"] expr2 = substitute_args(expr, p.args) for arg in p.args: expr += ";{}={}".format(arg, p.args[arg]) dv = lems.DerivedVariable(name=p.id, dimension="none", value="%s" % (expr2), exposure=p.id) ct.dynamics.add(dv) else: ct.add(lems.Exposure(p.id, "none")) ct.dynamics.add( lems.StateVariable(name=p.id, dimension="none", exposure=p.id)) if p.default_initial_value: if on_start is None: on_start = lems.OnStart() ct.dynamics.add(on_start) sa = lems.StateAssignment( variable=p.id, value=str(evaluate_expr(p.default_initial_value))) on_start.actions.append(sa) if p.time_derivative: td = lems.TimeDerivative(variable=p.id, value=p.time_derivative) ct.dynamics.add(td) if len(node.output_ports) > 1: raise Exception( "Currently only max 1 output port supported in NeuroML...") for op in node.output_ports: ct.add(lems.Exposure(op.id, "none")) ct.dynamics.add( lems.DerivedVariable(name=op.id, dimension="none", value=op.value, exposure=op.id)) only_output_port = "only_output_port" ct.add(lems.Exposure(only_output_port, "none")) ct.dynamics.add( lems.DerivedVariable( name=only_output_port, dimension="none", value=op.id, exposure=only_output_port, )) if len(graph.edges) > 0: model.add( lems.Include( os.path.join(os.path.dirname(__file__), "syn_definitions.xml"))) rsDL = neuromllite.Synapse(id="rsDL", lems_source_file=lems_definitions) net.synapses.append(rsDL) # syn_id = 'silentSyn' # silentSynDL = neuromllite.Synapse(id=syn_id, lems_source_file=lems_definitions) for edge in graph.edges: print(f" Edge: {edge.id} connects {edge.sender} to {edge.receiver}") ssyn_id = "silentSyn_proj_%s" % edge.id ssyn_id = "silentSyn_proj_%s" % edge.id # ssyn_id = 'silentSynX' silentDLin = neuromllite.Synapse(id=ssyn_id, lems_source_file=lems_definitions) model.add(lems.Component(ssyn_id, "silentRateSynapseDL")) net.synapses.append(silentDLin) net.projections.append( neuromllite.Projection( id="proj_%s" % edge.id, presynaptic=edge.sender, postsynaptic=edge.receiver, synapse=rsDL.id, pre_synapse=silentDLin.id, type="continuousProjection", weight=1, random_connectivity=neuromllite.RandomConnectivity( probability=1), )) # Much more todo... model.export_to_file(lems_definitions) print("Nml net: %s" % net) if save_to: new_file = net.to_json_file(save_to) print("Saved NML to: %s" % save_to) ################################################################################ ### Build Simulation object & save as JSON simtime = 1000 * run_duration_sec dt = 0.1 sim = neuromllite.Simulation( id="Sim%s" % net.id, network=new_file, duration=simtime, dt=dt, seed=123, recordVariables={"OUTPUT": { "all": "*" }}, ) recordVariables = {} for node in graph.nodes: for ip in node.input_ports: if not ip.id in recordVariables: recordVariables[ip.id] = {} recordVariables[ip.id][node.id] = 0 for p in node.parameters: if p.is_stateful(): if not p.id in recordVariables: recordVariables[p.id] = {} recordVariables[p.id][node.id] = 0 for op in node.output_ports: if not op.id in recordVariables: recordVariables[op.id] = {} recordVariables[op.id][node.id] = 0 sim.recordVariables = recordVariables if save_to: sf = sim.to_json_file() print("Saved Simulation to: %s" % sf) return net, sim