class TestTraversalMethods(unittest.TestCase): # Separate class with a setUp tree designed for easy testing of intended # traversal order. def setUp(self): self.tree = LinkedBinaryTree() self.root = self.tree._add_root(1) self.element2 = self.tree._add_left(self.root, 2) self.element3 = self.tree._add_right(self.root, 3) self.element4 = self.tree._add_left(self.element2, 4) self.element5 = self.tree._add_right(self.element2, 5) self.element6 = self.tree._add_left(self.element3, 6) self.element7 = self.tree._add_right(self.element3, 7) def test_preorder(self): visits_expected = [1, 2, 4, 5, 3, 6, 7] visits_actual = [] * 7 # List to store the visits in the order they happened for position in self.tree.preorder(): visits_actual.append(position.element()) self.assertEqual(visits_actual, visits_expected) def test_postorder(self): visits_expected = [4, 5, 2, 6, 7, 3, 1] visits_actual = [] * 7 # List to store the visits in order for position in self.tree.postorder(): visits_actual.append(position.element()) self.assertEqual(visits_actual, visits_expected) def test_breadthfirst(self): visits_expected = [1, 2, 3, 4, 5, 6, 7] visits_actual = [] * 7 for position in self.tree.breadthfirst(): visits_actual.append(position.element()) self.assertEqual(visits_actual, visits_expected)
def build_UNIST_tree(): """ This function returns a (linked) binary tree that contains (a simplified and fictitious version of) the organisational structure of schools and departments at UNIST. In particular, this function should return the following tree: UNIST --Engineering ----Management Engineering ------Big datastore ------Business process management ----Materials Engineering ------Wood ------Plastic --Business ----Business Administration """ tree = LinkedBinaryTree() root = tree._add_root("UNIST") p_eng = tree._add_left(root, "Engineering") p_business = tree._add_right(root, "Business") p_man_eng = tree._add_left(p_eng, "Management Engineering") p_big_data = tree._add_left(p_man_eng, "Big datastore") p_bpm = tree._add_right(p_man_eng, "Business process management") p_mat_eng = tree._add_right(p_eng, "Materials Engineering") p_ba = tree._add_left(p_business, "Business Administration") return tree
def main(): gs = GS() print("To terminate game, type -1 -1") usrstep = gs.getUserStep() while usrstep[0] != -1: gs.make_step(gs.board(), usrstep[0], usrstep[1], Board.CROSS_CELL) if gs.board().check_for_win_combos(Board.CROSS_CELL): print(gs.board()) print("CONGRATULATIONS! YOU WON!") break elif gs.board().is_full(): print("TIGHT!") # generate two possible steps option1 = gs.generate_step(gs.board()) option2 = gs.generate_step(gs.board()) cross = gs.board().get_cross_cells() zeros = gs.board().get_zero_cells() # build two new boards board1 = Board(3, 3) board1.configure(cross.append(option1)) board1.configure(zeros) board2 = Board(3, 3) board2.configure(cross[:-1].append(option2)) board2.configure(zeros) # build two new decision binary trees tree1 = LinkedBinaryTree(board1) tree2 = LinkedBinaryTree(board2) # calculate the number of victories for each tree gs.fill_board(tree1, tree1) result1 = gs.get_numVictories() gs.clear_victories() gs.fill_board(tree2, tree2) result2 = gs.get_numVictories() # choose the step with the biggest number of victories if result1 > result2: gs.make_step(gs.board(), option1[0], option1[1], Board.ZERO_CELL) else: gs.make_step(gs.board(), option2[0], option2[1], Board.ZERO_CELL) print(gs.board()) if gs.board().check_for_win_combos(): print("YOU LOST!") break elif gs.board().check_for_win_combos(Board.CROSS_CELL): print("CONGRATULATIONS! YOU WON!") break print("To terminate game, type -1 -1") usrstep = gs.getUserStep()
def setUp(self): self.tree = LinkedBinaryTree() self.root = self.tree._add_root(1) self.element2 = self.tree._add_left(self.root, 2) self.element3 = self.tree._add_right(self.root, 3) self.element4 = self.tree._add_left(self.element2, 4) self.element5 = self.tree._add_right(self.element2, 5) self.element6 = self.tree._add_left(self.element3, 6) self.element7 = self.tree._add_right(self.element3, 7)
def setUp(self): self.tree = LinkedBinaryTree() # Create a proper balanced tree with 3 levels (8 elements) self.root = self.tree._add_root("Root") self.left = self.tree._add_left(self.root, "L2 left child") self.right = self.tree._add_right(self.root, "L2 right child") self.lev3_first_left = self.tree._add_left(self.left, "L3 left-1") self.tree._add_right(self.left, "L3 right-1") self.tree._add_left(self.right, "L3 left-2") self.tree._add_right(self.right, "L3 right-2")
def make_tree(previous): """Сonstructing a game tree, by extending (by adding two child vertices) from the root of a tree """ # previous it is Board() if previous.if_won() == -1 or previous.if_won() == 1: return None new_move_left = random.choice(previous.empty_list()) tree = LinkedBinaryTree(previous) if len(previous.empty_list()) == 0: return None new_previous = copy.deepcopy(previous) new_previous.set_null(new_move_left) tree.left_child = LinkedBinaryTree(new_previous) make_tree(new_previous) if len(new_previous.empty_list()) == 0: return None new_move_right = random.choice(new_previous.empty_list()) n_new_previous = copy.deepcopy(new_previous) n_new_previous.set_null(new_move_right) tree.right_child = LinkedBinaryTree(n_new_previous) make_tree(n_new_previous)
def build_tree(self): """ Builds the game tree :return: object """ game_tree = LinkedBinaryTree() board = self.board game_tree._add_root(Board(board)) def add_board(tree, node): """ adds new board to a tree :param tree: object :param node: object :return: None """ positions = self.available_positions(node._element) if not positions: return None if tree.height() == tree.depth(tree._make_position(node)) \ and tree.height() % 2 == 0: symbol = 'o' else: symbol = 'x' pos = random.choice(positions) new_board = Board(node._element.board) new_board.board[pos[0], pos[1]] = symbol tree._add_left(tree._make_position(node), Board(new_board.board)) positions = self.available_positions(new_board) if not positions: return None pos = random.choice(positions) new_board = Board(node._element.board) new_board.board[pos[0], pos[1]] = symbol tree._add_right(tree._make_position(node), Board(new_board.board)) add_board(tree, node._left) add_board(tree, node._right) add_board(game_tree, game_tree._root) return game_tree
def test_validate(self): # Passing an object of type other than Position should raise TypeError with self.assertRaises(TypeError): self.tree._validate("spam") # Wrong container should raise value error position_from_other_container = LinkedBinaryTree()._add_root( "spam root") with self.assertRaises(ValueError): self.tree._validate(position_from_other_container) # If node was deprecated, meaning it was set to be its own parent per # the internal convention for deprecated nodes, then should raise # value error. p = self.lev3_first_left p._node._parent = p._node with self.assertRaises(ValueError): self.tree._validate(p)
def play_game(): load = is_yes(input("Load game? ")) if not load: guess = Guesser("Does it have legs?", "cat", "snake") print() else: guess = LinkedBinaryTree.load_tree("tree.dat") print("Loaded\n") again = True while again: print("Think of an animal, and I will guess it.") again = ask(guess) if again: print() if is_yes(input("Save game? ")): guess.save_tree("tree.dat") print("Saved")
def build_tree(b): if b.someone_wins == "TIE" or b.someone_wins == "O" or b.someone_wins == "X": return tree = LinkedBinaryTree(b) free_cells = b.empty_coords random_cell1 = choice(list(free_cells)) choice1 = deepcopy(b) choice1.turn("O", random_cell1) tree.left_child = LinkedBinaryTree(choice1) build_tree(choice1) free_cells.discard(random_cell1) if free_cells != set(): # we have to check if set isn't empty random_cell2 = choice(list(free_cells)) choice2 = deepcopy(b) choice2.turn("O", random_cell2) tree.right_child = LinkedBinaryTree(choice2) build_tree(choice2)
def construct_tree(): t = LinkedBinaryTree() root = t._add_root('Trees') l = t._add_left(root, 'General trees') r = t._add_right(root, 'Binary trees') t1 = LinkedBinaryTree() root = t1._add_root('section1') left = t1._add_left(root, 'paragraph1') right = t1._add_right(root, 'paragraph2') t2 = LinkedBinaryTree() root = t2._add_root('section2') left = t2._add_left(root, 'paragraph1') right = t2._add_right(root, 'paragraph2') t._attach(l, t1, t2) return t
def _compose_ht_tree(self, text): """Huffman tree construction for text.""" freq_table = self._compute_chr_freq(text) ht_queue = HeapPriorityQueue() for freq, lett in freq_table: ht_tree = LinkedBinaryTree() ht_tree._add_root((freq, lett)) ht_queue.add(freq, ht_tree) while len(ht_queue) > 1: (freq1, subtree1) = ht_queue.remove_min() (freq2, subtree2) = ht_queue.remove_min() freq = freq1 + freq2 ht_tree = LinkedBinaryTree() ht_tree._add_root((freq, None)) ht_tree._attach(ht_tree.root(), subtree1, subtree2) ht_queue.add(freq, ht_tree) _, ht_tree = ht_queue.remove_min() return ht_tree
def build_UNIST_tree(): """ This function should return a binary tree that contains (a simplified and fictitious version of) the organisational structure of schools and departments at UNIST. In particular, this function should return the following tree: `+-* UNIST --Engineering ----Management Engineering ------Big data ------Business process management ----Materials Engineering ------Wood ------Plastic --Business ----Business Administration :return: the UNIST tree """ UNIST = LinkedBinaryTree() root = UNIST._add_root("UNIST") EE = UNIST._add_left(root, "Engineering") BU = UNIST._add_right(root, "Bussiness") MNE = UNIST._add_left(EE, "Management Engineering") UNIST._add_left(MNE, "Big data") UNIST._add_right(MNE, "Business process management") MTE = UNIST._add_right(EE, "Material Engineering") UNIST._add_left(MTE, "Wood") UNIST._add_right(MTE, "Plastic") UNIST._add_left(BU, "Business Administration") return UNIST
def create_tree(): t = LinkedBinaryTree() f = t._add_root('f') # left tree b = t._add_left(f, 'b') t._add_left(b, 'a') d = t._add_right(b, 'd') t._add_left(d, 'c') t._add_right(d, 'e') # right tree g = t._add_right(f, 'g') i = t._add_right(g, 'i') t._add_left(i, 'h') return t
from linked_binary_tree import LinkedBinaryTree test_tr = LinkedBinaryTree(' a') #test_tr.is_empty() print(test_tr) print("root_val ", test_tr.get_root_val()) print("left_child ", test_tr.get_left_child()) test_tr.insert_left(' b') print("left_child ", test_tr.get_left_child()) print("left_child().get_root_val ", test_tr.get_left_child().get_root_val()) test_tr.insert_left(' bb') print("left_child ", test_tr.get_left_child()) print("left_child().get_root_val ", test_tr.get_left_child().get_root_val()) test_tr.insert_right(' c') print("right_child ", test_tr.get_right_child()) print("right_child().get_root_val ", test_tr.get_right_child().get_root_val()) test_tr.get_right_child().set_root_val(' hello') print("right_child().get_root_val", test_tr.get_right_child().get_root_val()) test_tr.inorder() a_node = LinkedBinaryTree('A') a_node.insert_left('B') a_node.insert_right('C') b_node = a_node.left_child b_node.insert_right('D') c_node = a_node.right_child
"""Preorder traversal""" # 应该使用普通的树而不是二叉树 from linked_binary_tree import LinkedBinaryTree # Electronics R’Us # 1 R&D # 2 Sales # 2.1 Domestic # 2.2 International # 2.2.1 Canada # 2.2.2 America toc = LinkedBinaryTree() toc._add_root('Electronics R’Us') toc._add_left(toc.root(), 'R&D') toc._add_right(toc.root(), 'Sales') toc._add_left(toc.right(toc.root()), 'Domestic') toc._add_right(toc.right(toc.root()), 'International') toc._add_left(toc.right(toc.right(toc.root())), 'Canada') toc._add_right(toc.right(toc.right(toc.root())), 'America') def parenthesize(t, p, rep): if t.is_empty(): return rep += str(p.element()) if not t.is_leaf(p): first_time = True for c in t.children(p):
"""Preorder traversal""" # 应该使用普通的树而不是二叉树 from linked_binary_tree import LinkedBinaryTree # Electronics R’Us # 1 R&D # 2 Sales # 2.1 Domestic # 2.2 International # 2.2.1 Canada # 2.2.2 America toc = LinkedBinaryTree() toc._add_root('Electronics R’Us') toc._add_left(toc.root(), 'R&D') toc._add_right(toc.root(), 'Sales') toc._add_left(toc.right(toc.root()), 'Domestic') toc._add_right(toc.right(toc.root()), 'International') toc._add_left(toc.right(toc.right(toc.root())), 'Canada') toc._add_right(toc.right(toc.right(toc.root())), 'America') # Solution 1: O(n^2) # for p in toc.preorder(): # print(toc.depth(p)*2*' '+p.element()) # Solution 2: O(n) def preorder_indent(t, p, d): print(2 * d * ' ' + p.element()) for c in t.children(p): preorder_indent(t, c, d + 1)
def test_root(self): blank_tree = LinkedBinaryTree() root = blank_tree.root() self.assertEqual(root, None) # Should return None for an empty tree. root = self.tree.root() self.assertEqual(root.element(), "Root")
from linked_binary_tree import LinkedBinaryTree a = LinkedBinaryTree() print('!!!') a._add_root('!!') a._add_left(a.root(), '????') print('!') print(a.left(a.root()).element()) a._delete(a.left(a.root()))
def construct_num_tree(): t = LinkedBinaryTree() root = t._add_root(0) l = t._add_left(root, 1) r = t._add_right(root, 2) t1 = LinkedBinaryTree() root = t1._add_root(3) left = t1._add_left(root, 5) right = t1._add_right(root, 6) t2 = LinkedBinaryTree() root = t2._add_root(4) left = t2._add_left(root, 7) right = t2._add_right(root, 8) t._attach(l, t1, t2) return t
def __init__(self): self.cells = [[0] * 3 for _ in range(3)] self.last_move = Board.NOUGHT self.number_of_moves = 0 self.status = None self.tree = LinkedBinaryTree(self)
class TestSimpleCases(unittest.TestCase): """ Test obvious cases to confirm basic functionality and syntax correctness. """ def setUp(self): self.tree = LinkedBinaryTree() # Create a proper balanced tree with 3 levels (8 elements) self.root = self.tree._add_root("Root") self.left = self.tree._add_left(self.root, "L2 left child") self.right = self.tree._add_right(self.root, "L2 right child") self.lev3_first_left = self.tree._add_left(self.left, "L3 left-1") self.tree._add_right(self.left, "L3 right-1") self.tree._add_left(self.right, "L3 left-2") self.tree._add_right(self.right, "L3 right-2") def test_validate(self): # Passing an object of type other than Position should raise TypeError with self.assertRaises(TypeError): self.tree._validate("spam") # Wrong container should raise value error position_from_other_container = LinkedBinaryTree()._add_root( "spam root") with self.assertRaises(ValueError): self.tree._validate(position_from_other_container) # If node was deprecated, meaning it was set to be its own parent per # the internal convention for deprecated nodes, then should raise # value error. p = self.lev3_first_left p._node._parent = p._node with self.assertRaises(ValueError): self.tree._validate(p) # ---------------------------------- public methods -------------------- def test_root(self): blank_tree = LinkedBinaryTree() root = blank_tree.root() self.assertEqual(root, None) # Should return None for an empty tree. root = self.tree.root() self.assertEqual(root.element(), "Root") def test_parent(self): # should return None when called on p = root parent_of_root = self.tree.parent(self.tree.root()) self.assertEqual(parent_of_root, None) parent_of_left = self.tree.parent(self.left) # Position object from # setUp, name self.left references # root's left child. self.assertEqual(parent_of_left, self.root) # Try the next level down parent_of_node = self.tree.parent(self.lev3_first_left) self.assertEqual(parent_of_node, self.left) def test_left(self): left = self.tree.left(self.root) # parent's left should be the object # stored as self.left self.assertEqual(left, self.left) def test_right(self): right = self.tree.right(self.root) # root's right should be the object # stored as self.right self.assertEqual(right, self.right) def test_num_children(self): self.assertEqual(self.tree.num_children(self.root), 2) # Root has 2 children self.assertEqual(self.tree.num_children(self.right), 2) # Right has 2 self.assertEqual(self.tree.num_children(self.lev3_first_left), 0) # This node should be in the # bottom level of the setUp # tree and therefore have # no children. # ------------------- tests for concrete methods inherited from Tree ------ def test_is_root(self): """Concrete method implemented in the Tree abstract base class and inherited through to LBT class.""" # Should be true for root self.assertTrue(self.tree.is_root(self.root)) # Should be false for a node from the middle or bottom layer self.assertFalse(self.tree.is_root(self.right)) self.assertFalse(self.tree.is_root(self.lev3_first_left)) def test_is_leaf(self): # testing _attach will "coverage" this pass def test_is_empty(self): # testing _attach will "coverage this pass def test_height(self): """ Test the height method defined in the Tree abstract base class that LBT class has through inheritance. """ # Calling it on root should return 2, the height of the full three-level # tree. self.assertEqual(self.tree.height(self.root), 2) # Height of a node in the middle layer should be 1 self.assertEqual(self.tree.height(self.right), 1) # Height of a node in the bottom layer should be 0 self.assertEqual(self.tree.height(self.lev3_first_left), 0) def test_depth(self): """ Test the depth method defined in the Tree abstract base class and inherited in the LBT class. """ # Depth of a node in the bottom later should be 2 (2 levels separating # that Position from root Position). self.assertEqual(self.tree.depth(self.lev3_first_left), 2) # Depth of node in middle layer should be 1 self.assertEqual(self.tree.depth(self.left), 1) # Depth of root should be zero self.assertEqual(self.tree.depth(self.root), 0) def test_attach(self): """Tests for the nonpublic _attach method, mainly to hit inherited public methods that it will call.""" new_tree = LinkedBinaryTree() ntroot = new_tree._add_root("New tree root") new_tree._add_left(ntroot, "NT left") new_tree._add_right(ntroot, "NT right") new_tree2 = LinkedBinaryTree() nt2root = new_tree2._add_root("2nd new tree root") new_tree2._add_left(nt2root, "left") new_tree2._add_right(nt2root, "right") self.tree._attach(self.lev3_first_left, new_tree, new_tree2) # For now just pass if none of these calls raised an error, no # unittest.assertSomething method call def test_positions(self): # This covers postorder() method for purposes # of the "coverage" metric. for position in self.tree.positions( ): # Test that they can be iterated self.assertIsInstance(position, LinkedBinaryTree.Position) # and that # they're all Positions ## def test_preorder(self): # placeholder ## pass def test_postorder(self): for position in self.tree.postorder(): self.assertIsInstance(position, LinkedBinaryTree.Position)
if T.left(p) is not None: inorder(T.left(p)) print T._validate(p)._element if T.right(p) is not None: inorder(T.right(p)) if __name__ == '__main__': import random def build_tree(T, p, level): if level > 5: return None else: if T.left(p) is None: T._add_left(p, random.randint(1, 10)) build_tree(T, T.left(p), level+1) if T.right(p) is None: T._add_right(p, random.randint(1, 10)) build_tree(T, T.right(p), level+1) test_tree = LinkedBinaryTree() test_tree._add_root('10') build_tree(test_tree, test_tree.root(), 1) count = 1 for x in test_tree.positions(): print str(count) +': ' + str(test_tree._validate(x)._element) count += 1
def test_attach(self): """Tests for the nonpublic _attach method, mainly to hit inherited public methods that it will call.""" new_tree = LinkedBinaryTree() ntroot = new_tree._add_root("New tree root") new_tree._add_left(ntroot, "NT left") new_tree._add_right(ntroot, "NT right") new_tree2 = LinkedBinaryTree() nt2root = new_tree2._add_root("2nd new tree root") new_tree2._add_left(nt2root, "left") new_tree2._add_right(nt2root, "right") self.tree._attach(self.lev3_first_left, new_tree, new_tree2)
from linked_binary_tree import LinkedBinaryTree test_tr = LinkedBinaryTree(' a') print(test_tr) print("root_val ", test_tr.get_root_val()) print("left_child ", test_tr.get_left_child()) test_tr.insert_left(' b') print("left_child ", test_tr.get_left_child()) print("left_child().get_root_val ", test_tr.get_left_child().get_root_val()) test_tr.insert_right(' c') print("right_child ", test_tr.get_right_child()) print("right_child().get_root_val ", test_tr.get_right_child().get_root_val()) r.get_right_child().set_root_val(' hello') print("right_child().get_root_val", test_tr.get_right_child().get_root_val()) print(test_tr)
from linked_binary_tree import LinkedBinaryTree # Construct Tree: T = LinkedBinaryTree() T.add_root(1) p1 = T.add_left(T.root(), 2) p2 = T.add_right(T.root(), 3) T.add_left(p1, 4) T.add_right(p1, 5) p3 = T.add_left(p2, 6) p4 = T.add_right(p2, 7) T.add_left(p3, 8) T.add_right(p3, 9) T.add_right(p4, 10) # Check Traversals: print("\nPreorder: ") for p in T.preorder(): print(p.element()) print("\nPostorder: ") for p in T.postorder(): print(p.element()) print("\nInorder: ")