Example #1
0
def vid_img(opt):
    output_dir = (opt.output_dir + "/" + name(opt.input.content) + "_" +
                  "_".join([name(s) for s in opt.input.style.split(",")]))

    flow_model = flow.get_flow_model(opt)
    frames = load.process_content_video(flow_model, opt)
    content_size = np.array(load.preprocess(frames[0]).size()[-2:])

    style_images_big = load.process_style_images(opt)

    for size_n, (current_size,
                 num_iters) in enumerate(zip(*determine_scaling(opt.param))):
        print("\nCurrent size {}px".format(current_size))
        os.makedirs(output_dir + "/" + str(current_size), exist_ok=True)
        content_scale = current_size / max(*content_size)

        if current_size <= 1024:
            opt.model.gpu = 0
            opt.model.multidevice = False
        else:
            opt.model.gpu = "0,1"
            opt.model.multidevice = True
            opt.param.tv_weight = 0
        net = models.load_model(opt.model, opt.param)
        net.set_style_targets(style_images_big, content_scale * content_size,
                              opt)

        for pass_n in range(opt.param.passes_per_scale):
            init_image = None
            for (prev_frame, this_frame) in zip(frames,
                                                frames[1:] + frames[:1]):
                # TODO add update_style() function to support changing styles per frame
                opt.output = "%s/%s/%s_%s.png" % (output_dir, current_size,
                                                  pass_n + 1, name(this_frame))
                if os.path.isfile(opt.output):
                    print(
                        "Skipping pass: %s, frame: %s. File already exists." %
                        (pass_n + 1, name(this_frame)))
                    continue
                print("Optimizing... size: %s, pass: %s, frame: %s" %
                      (current_size, pass_n + 1, name(this_frame)))

                content_frames = [
                    F.interpolate(load.preprocess(prev_frame),
                                  scale_factor=content_scale,
                                  mode="bilinear",
                                  align_corners=False),
                    F.interpolate(load.preprocess(this_frame),
                                  scale_factor=content_scale,
                                  mode="bilinear",
                                  align_corners=False),
                ]
                content_frames = [
                    match_histogram(frame, style_images_big[0])
                    for frame in content_frames
                ]
                net.set_content_targets(content_frames[1], opt)

                # Initialize the image
                # TODO make sure initialization correct even when continuing half way through video stylization
                if size_n == 0 and pass_n == 0:
                    if opt.input.init == "random":
                        init_image = th.randn(
                            content_frames[1].size()).mul(0.001)
                    elif opt.input.init == "prev_warp":
                        flo_file = "%s/flow/forward_%s_%s.flo" % (
                            output_dir, name(prev_frame), name(this_frame))
                        flow_map = load.flow_warp_map(flo_file)
                        if init_image is None:
                            init_image = content_frames[0]
                        init_image = F.grid_sample(init_image,
                                                   flow_map,
                                                   padding_mode="border")
                    else:
                        init_image = content_frames[1].clone()
                else:
                    if pass_n == 0:
                        # load images from last pass of previous size
                        if init_image is None:
                            ifile = "%s/%s/%s_%s.png" % (
                                output_dir,
                                prev_size,
                                opt.param.passes_per_scale,
                                name(prev_frame),
                            )
                            init_image = load.preprocess(ifile)
                            init_image = F.interpolate(
                                init_image,
                                size=content_frames[0].size()[2:],
                                mode="bilinear",
                                align_corners=False)
                        bfile = "%s/%s/%s_%s.png" % (
                            output_dir,
                            prev_size,
                            opt.param.passes_per_scale,
                            name(this_frame),
                        )
                        blend_image = load.preprocess(bfile)
                        blend_image = F.interpolate(
                            blend_image,
                            size=content_frames[0].size()[2:],
                            mode="bilinear",
                            align_corners=False)
                    else:
                        # load images from previous pass of current size
                        if init_image is None:
                            ifile = "%s/%s/%s_%s.png" % (output_dir,
                                                         current_size, pass_n,
                                                         name(prev_frame))
                            init_image = load.preprocess(ifile)
                        bfile = "%s/%s/%s_%s.png" % (output_dir, current_size,
                                                     pass_n, name(this_frame))
                        blend_image = load.preprocess(bfile)

                    direction = "forward" if pass_n % 2 == 0 else "backward"
                    flo_file = f"{output_dir}/flow/{direction}_{name(prev_frame)}_{name(this_frame)}.flo"
                    flow_map = load.flow_warp_map(flo_file)
                    flow_map = F.interpolate(flow_map.permute(0, 3, 1, 2),
                                             size=init_image.size()[2:],
                                             mode="bilinear").permute(
                                                 0, 2, 3, 1)

                    warp_image = F.grid_sample(init_image,
                                               flow_map,
                                               padding_mode="border")

                    flow_weight_file = f"{output_dir}/flow/{direction}_{name(prev_frame)}_{name(this_frame)}.png"
                    reliable_flow = load.reliable_flow_weighting(
                        flow_weight_file)
                    reliable_flow = F.interpolate(reliable_flow,
                                                  size=init_image.size()[2:],
                                                  mode="bilinear",
                                                  align_corners=False)

                    net.set_temporal_targets(warp_image,
                                             warp_weights=reliable_flow,
                                             opt=opt)

                    blend_init_image = (
                        1 - opt.param.blend_weight
                    ) * blend_image + opt.param.blend_weight * init_image
                    warp_blend_init_image = F.grid_sample(
                        blend_init_image, flow_map, padding_mode="border")
                    init_image = warp_blend_init_image

                output_image = style.optimize(
                    content_frames, style_images_big, init_image,
                    num_iters // opt.param.passes_per_scale, opt)

                init_image = match_histogram(output_image.detach().cpu(),
                                             style_images_big[0])

                disp = load.deprocess(init_image.clone())
                if opt.param.original_colors == 1:
                    disp = load.original_colors(
                        load.deprocess(content_frames[1].clone()), disp)
                disp.save(str(opt.output))

            # clean up / prepare for next pass
            frames = frames[7:] + frames[:7]  # rotate frames
            frames = list(reversed(frames))

        ffmpeg.input(output_dir + "/" + str(current_size) + "/" + str(pass_n) +
                     "_%05d.png").output(
                         "%s/%s_%s.mp4" %
                         (output_dir, name(output_dir), current_size),
                         **opt.ffmpeg).overwrite_output().run()
        prev_size = current_size
        del net
        th.cuda.empty_cache()

    ffmpeg.input("{output_dir}/{current_size}/{pass_n}_%05d.png").output(
        opt.output, **opt.ffmpeg).overwrite_output().run()
Example #2
0
def img_img(opt):
    style_images_big = load.process_style_images(opt)
    content_image_big = match_histogram(load.preprocess(opt.input.content),
                                        style_images_big)
    content_size = np.array(content_image_big.size()[-2:])
    if opt.input.init != "content" and opt.input.init != "random":
        pastiche = load.preprocess(opt.input.init)
    else:
        pastiche = None

    for (current_size, num_iters) in zip(*determine_scaling(opt.param)):
        # print("\nCurrent size {}px".format(current_size))
        opt.pbar.set_description(
            f"{opt.output.split('/')[-1]} @ {current_size}px")

        # scale content image
        content_scale = current_size / max(*content_size)
        if not content_scale == 1:
            content_image = F.interpolate(content_image_big,
                                          scale_factor=content_scale,
                                          mode="bilinear",
                                          align_corners=False)

        # scale style images
        style_images = []
        content_area = content_image.shape[2] * content_image.shape[3]
        for img in style_images_big:
            style_scale = math.sqrt(
                content_area /
                (img.size(3) * img.size(2))) * opt.param.style_scale
            style_images.append(
                F.interpolate(th.clone(img),
                              scale_factor=style_scale,
                              mode="bilinear",
                              align_corners=False))

        # Initialize the pastiche image
        if opt.input.init == "random" and pastiche is None:
            H, W = content_image.shape[2:]
            pastiche = th.randn(1, 3, H, W).mul(0.001)
        elif opt.input.init == "content" and pastiche is None:
            pastiche = F.interpolate(
                content_image_big.clone(),
                tuple(np.int64(content_image.shape[2:])),
                mode="bilinear",
                align_corners=False,
            )
        else:
            pastiche = F.interpolate(pastiche.clone(),
                                     tuple(np.int64(content_image.shape[2:])),
                                     mode="bilinear",
                                     align_corners=False)

        pastiche = match_histogram(pastiche, style_images_big)

        output_image = style.optimize(content_image, style_images, pastiche,
                                      num_iters, opt)

        pastiche = match_histogram(output_image.detach().cpu(),
                                   style_images_big)

    load.save_tensor_to_file(pastiche.detach().cpu(), opt)
Example #3
0
def img_img(args):
    style_images_big = load.process_style_images(args)
    content_image_big = match_histogram(load.preprocess(args.content),
                                        style_images_big,
                                        mode=args.match_histograms)
    content_size = np.array(content_image_big.size()[-2:])
    if args.init != "content" and args.init != "random":
        pastiche = load.preprocess(args.init)
    else:
        pastiche = None

    for (current_size, num_iters) in zip(args.image_sizes, args.num_iters):
        print("\nCurrent size {}px".format(current_size))
        if os.path.exists(f"{args.output}_{current_size}.png"):
            pastiche = load.preprocess(f"{args.output}_{current_size}.png")
            continue

        # scale content image
        content_scale = current_size / max(*content_size)
        content_image = F.interpolate(content_image_big,
                                      scale_factor=content_scale,
                                      mode="bilinear",
                                      align_corners=False)

        # scale style images
        style_images = []
        content_area = content_image.shape[2] * content_image.shape[3]
        for img in style_images_big:
            style_scale = math.sqrt(
                content_area / (img.size(3) * img.size(2))) * args.style_scale
            style_images.append(
                F.interpolate(th.clone(img),
                              scale_factor=style_scale,
                              mode="bilinear",
                              align_corners=False))

        # Initialize the pastiche image
        if args.init == "random" and pastiche is None:
            H, W = content_image.shape[2:]
            pastiche = th.randn(1, 3, H, W).mul(0.001)
        elif args.init == "content" and pastiche is None:
            pastiche = F.interpolate(
                content_image_big.clone(),
                tuple(np.int64(content_image.shape[2:])),
                mode="bilinear",
                align_corners=False,
            )
        else:
            pastiche = F.interpolate(pastiche.clone(),
                                     tuple(np.int64(content_image.shape[2:])),
                                     mode="bilinear",
                                     align_corners=False)
        pastiche = match_histogram(pastiche,
                                   style_images_big,
                                   mode=args.match_histograms)

        output_image = optim.optimize(content_image, style_images, pastiche,
                                      num_iters, args)

        pastiche = match_histogram(output_image.detach().cpu(),
                                   style_images_big,
                                   mode=args.match_histograms)

        load.save_tensor_to_file(pastiche.detach().cpu(),
                                 args,
                                 size=current_size)
Example #4
0
args = config.get_args()

if args.seed >= 0:
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    if args.backend == "cudnn":
        torch.backends.cudnn.deterministic = True

output_dir = args.output_dir + "/" + name(args.content) + "_" + "_".join(
    [name(s) for s in args.style])

flow_model = flow.get_flow_model(args)
frames = load.process_content_video(flow_model, args)
content_size = np.array(load.preprocess(frames[0]).size()[-2:])

style_images_big = load.process_style_images(args)

for size_n, (current_size,
             num_iters) in enumerate(zip(args.image_sizes, args.num_iters)):

    if len(
            glob("%s/%s/*.png" % (output_dir, args.image_sizes[min(
                len(args.image_sizes) - 1, size_n + 1)]))) == len(frames):
        print("Skipping size: %s, already done." % current_size)
        prev_size = current_size
        continue

    print("\nCurrent size {}px".format(current_size))
    os.makedirs(output_dir + "/" + str(current_size), exist_ok=True)
    content_scale = current_size / max(*content_size)
Example #5
0
def vid_img(args):
    output_dir = args.output_dir + "/" + name(args.content) + "_" + "_".join(
        [name(s) for s in args.style])

    flow_model = flow.get_flow_model(args)
    frames = load.process_content_video(flow_model, args)
    content_size = np.array(load.preprocess(frames[0]).size()[-2:])

    style_images_big = load.process_style_images(args)

    for size_n, (current_size,
                 num_iters) in enumerate(zip(args.image_sizes,
                                             args.num_iters)):

        if len(
                glob.glob("%s/%s/*.png" % (output_dir, args.image_sizes[min(
                    len(args.image_sizes) - 1, size_n + 1)]))) == len(frames):
            print("Skipping size: %s, already done." % current_size)
            prev_size = current_size
            continue

        print("\nCurrent size {}px".format(current_size))
        os.makedirs(output_dir + "/" + str(current_size), exist_ok=True)
        content_scale = current_size / max(*content_size)

        # scale style images
        style_images = []
        content_area = content_scale**2 * content_size[0] * content_size[1]
        for img in style_images_big:
            style_scale = math.sqrt(
                content_area / (img.size(3) * img.size(2))) * args.style_scale
            style_images.append(
                F.interpolate(th.clone(img),
                              scale_factor=style_scale,
                              mode="bilinear",
                              align_corners=False))

        optim.set_model_args(args, current_size)
        net, losses = models.load_model(args)
        # optim.set_style_targets(net, style_images, args)

        for pass_n in range(args.passes_per_scale):
            pastiche = None

            if args.loop:
                start_idx = random.randrange(0, len(frames) - 1)
                frames = frames[
                    start_idx:] + frames[:start_idx]  # rotate frames

            if len(
                    glob.glob("%s/%s/%s_*.png" % (output_dir, current_size,
                                                  pass_n + 2))) == len(frames):
                print(f"Skipping pass: {pass_n + 1}, already done.")
                frames = list(reversed(frames))
                continue

            for n, (prev_frame, this_frame) in enumerate(
                    zip(frames + frames[:11 if args.loop else 1],
                        frames[1:] + frames[:10 if args.loop else 1])):
                # TODO add update_style() function to support changing styles per frame

                args.output = "%s/%s/%s_%s.png" % (
                    output_dir, current_size, pass_n + 1, name(this_frame))
                if os.path.isfile(args.output) and not n >= len(frames):
                    print(
                        "Skipping pass: %s, frame: %s. File already exists." %
                        (pass_n + 1, name(this_frame)))
                    continue

                print("Optimizing... size: %s, pass: %s, frame: %s" %
                      (current_size, pass_n + 1, name(this_frame)))

                content_frames = [
                    F.interpolate(load.preprocess(prev_frame),
                                  scale_factor=content_scale,
                                  mode="bilinear",
                                  align_corners=False),
                    F.interpolate(load.preprocess(this_frame),
                                  scale_factor=content_scale,
                                  mode="bilinear",
                                  align_corners=False),
                ]
                content_frames = [
                    match_histogram(frame,
                                    style_images_big[0],
                                    mode=args.match_histograms)
                    for frame in content_frames
                ]
                flow_direction = "forward" if pass_n % 2 == 0 else "backward"
                # optim.set_content_targets(net, content_frames[1], args)

                # Initialize the image
                # TODO make sure initialization correct even when continuing half way through video stylization
                if size_n == 0 and pass_n == 0:
                    if args.init == "random":
                        pastiche = th.randn(
                            content_frames[1].size()).mul(0.001)
                    elif args.init == "prev_warp":
                        if pastiche is None:
                            pastiche = content_frames[0]
                        flo_file = f"{output_dir}/flow/{flow_direction}_{name(prev_frame)}_{name(this_frame)}.flo"
                        flow_map = load.flow_warp_map(flo_file,
                                                      pastiche.shape[2:])
                        pastiche = F.grid_sample(pastiche,
                                                 flow_map,
                                                 padding_mode="border")
                    else:
                        pastiche = content_frames[1].clone()
                else:
                    if pass_n == 0:
                        # load images from last pass of previous size
                        if pastiche is None:
                            ifile = "%s/%s/%s_%s.png" % (
                                output_dir,
                                prev_size
                                if n <= len(frames) else current_size,
                                args.passes_per_scale
                                if n <= len(frames) else pass_n + 1,
                                name(prev_frame),
                            )
                            pastiche = load.preprocess(ifile)
                            pastiche = F.interpolate(
                                pastiche,
                                size=content_frames[0].size()[2:],
                                mode="bilinear",
                                align_corners=False)
                        bfile = "%s/%s/%s_%s.png" % (
                            output_dir,
                            prev_size if n <= len(frames) else current_size,
                            args.passes_per_scale
                            if n <= len(frames) else pass_n + 1,
                            name(this_frame),
                        )
                        blend_image = load.preprocess(bfile)
                        blend_image = F.interpolate(
                            blend_image,
                            size=content_frames[0].size()[2:],
                            mode="bilinear",
                            align_corners=False)
                    else:
                        # load images from previous pass of current size
                        if pastiche is None:
                            ifile = "%s/%s/%s_%s.png" % (
                                output_dir,
                                current_size,
                                pass_n if n <= len(frames) else pass_n + 1,
                                name(prev_frame),
                            )
                            pastiche = load.preprocess(ifile)
                        bfile = "%s/%s/%s_%s.png" % (
                            output_dir,
                            current_size,
                            pass_n if n <= len(frames) else pass_n + 1,
                            name(this_frame),
                        )
                        blend_image = load.preprocess(bfile)

                    flo_file = f"{output_dir}/flow/{flow_direction}_{name(prev_frame)}_{name(this_frame)}.flo"
                    flow_map = load.flow_warp_map(flo_file, pastiche.shape[2:])

                    warp_image = F.grid_sample(pastiche,
                                               flow_map,
                                               padding_mode="border")

                    flow_weight_file = f"{output_dir}/flow/{flow_direction}_{name(prev_frame)}_{name(this_frame)}.png"
                    reliable_flow = load.reliable_flow_weighting(
                        flow_weight_file)
                    reliable_flow = F.interpolate(reliable_flow,
                                                  size=pastiche.size()[2:],
                                                  mode="bilinear",
                                                  align_corners=False)

                    optim.set_temporal_targets(net,
                                               warp_image,
                                               warp_weights=reliable_flow,
                                               args=args)

                    pastiche = (
                        1 - args.temporal_blend
                    ) * blend_image + args.temporal_blend * pastiche

                output_image = optim.optimize(
                    content_frames[1], style_images, pastiche,
                    num_iters // args.passes_per_scale, args, net, losses)

                pastiche = match_histogram(output_image.detach().cpu(),
                                           style_images_big[0],
                                           mode=args.match_histograms)

                disp = load.deprocess(pastiche.clone())
                if args.original_colors == 1:
                    disp = load.original_colors(
                        load.deprocess(content_frames[1].clone()), disp)
                disp.save(str(args.output))

            # reverse frames for next pass
            frames = list(reversed(frames))

        ffmpeg.input(output_dir + "/" + str(current_size) + "/" + str(pass_n) +
                     "_%05d.png").output(
                         "%s/%s_%s.mp4" %
                         (output_dir, name(output_dir), current_size),
                         **args.ffmpeg).overwrite_output().run()
        prev_size = current_size
        del net
        th.cuda.empty_cache()