def _dot_M_xyz(M,xyz): """ Perform matrix multiplication between M and xyz (M*xyz) using einsum. Args: :xyz: | 2D or 3D ndarray :M: | 2D or 3D ndarray | if 2D: use same matrix M for each xyz, | if 3D: use M[i] for xyz[i,:] (2D xyz) or xyz[:,i,:] (3D xyz) Returns: :M*xyz: | ndarray with same shape as xyz containing dot product of M and xyz. """ # convert xyz to ...: if np.ndim(M)==2: if len(xyz.shape) == 3: return np.einsum('ij,klj->kli', M, xyz) else: return np.einsum('ij,lj->li', M, xyz) else: if len(xyz.shape) == 3: # second dim of x must match dim of 1st of M and 1st dim of xyzw return np.concatenate([np.einsum('ij,klj->kli', M[i], xyz[:,i:i+1,:]) for i in range(M.shape[0])],axis=1) else: # first dim of xyz must match dim of 1st of M and 1st dim of xyzw return np.concatenate([np.einsum('ij,lj->li', M[i], xyz[i:i+1,:]) for i in range(M.shape[0])],axis=0)
def join(self, data): """ Join data along last axis and return instance. """ if data[0].ndim == 2: #faster implementation self.value = np.transpose( np.concatenate(data, axis=0).reshape((np.hstack( (len(data), data[0].shape)))), (1, 2, 0)) elif data[0].ndim == 1: self.value = np.concatenate(data, axis=0).reshape((np.hstack( (len(data), data[0].shape)))).T else: self.value = np.hstack(data)[0] return self
def normalize_3x3_matrix(M, xyz0 = np.array([[1.0,1.0,1.0]])): """ Normalize 3x3 matrix M to xyz0 -- > [1,1,1] | If M.shape == (1,9): M is reshaped to (3,3) Args: :M: | ndarray((3,3) or ndarray((1,9)) :xyz0: | 2darray, optional Returns: :returns: | normalized matrix such that M*xyz0 = [1,1,1] """ M = np2d(M) if M.shape[-1]==9: M = M.reshape(3,3) if xyz0.shape[0] == 1: return np.dot(np.diagflat(1/(np.dot(M,xyz0.T))),M) else: return np.concatenate([np.dot(np.diagflat(1/(np.dot(M,xyz0[1].T))),M) for i in range(xyz0.shape[0])],axis=0).reshape(xyz0.shape[0],3,3)
def spd_to_mcri(SPD, D = 0.9, E = None, Yb = 20.0, out = 'Rm', wl = None): """ Calculates the MCRI or Memory Color Rendition Index, Rm Args: :SPD: | ndarray with spectral data (can be multiple SPDs, | first axis are the wavelengths) :D: | 0.9, optional | Degree of adaptation. :E: | None, optional | Illuminance in lux | (used to calculate La = (Yb/100)*(E/pi) to then calculate D | following the 'cat02' model). | If None: the degree is determined by :D: | If (:E: is not None) & (:Yb: is None): :E: is assumed to contain | the adapting field luminance La (cd/m²). :Yb: | 20.0, optional | Luminance factor of background. (used when calculating La from E) | If None, E contains La (cd/m²). :out: | 'Rm' or str, optional | Specifies requested output (e.g. 'Rm,Rmi,cct,duv') :wl: | None, optional | Wavelengths (or [start, end, spacing]) to interpolate the SPDs to. | None: default to no interpolation Returns: :returns: | float or ndarray with MCRI Rm for :out: 'Rm' | Other output is also possible by changing the :out: str value. References: 1. `K.A.G. Smet, W.R. Ryckaert, M.R. Pointer, G. Deconinck, P. Hanselaer,(2012) “A memory colour quality metric for white light sources,” Energy Build., vol. 49, no. C, pp. 216–225. <http://www.sciencedirect.com/science/article/pii/S0378778812000837>`_ """ SPD = np2d(SPD) if wl is not None: SPD = spd(data = SPD, interpolation = _S_INTERP_TYPE, kind = 'np', wl = wl) # unpack metric default values: avg, catf, cieobs, cri_specific_pars, cspace, ref_type, rg_pars, sampleset, scale = [_MCRI_DEFAULTS[x] for x in sorted(_MCRI_DEFAULTS.keys())] similarity_ai = cri_specific_pars['similarity_ai'] Mxyz2lms = cspace['Mxyz2lms'] scale_fcn = scale['fcn'] scale_factor = scale['cfactor'] sampleset = eval(sampleset) # A. calculate xyz: xyzti, xyztw = spd_to_xyz(SPD, cieobs = cieobs['xyz'], rfl = sampleset, out = 2) if 'cct' in out.split(','): cct, duv = xyz_to_cct(xyztw, cieobs = cieobs['cct'], out = 'cct,duv',mode = 'lut') # B. perform chromatic adaptation to adopted whitepoint of ipt color space, i.e. D65: if catf is not None: Dtype_cat, F, Yb_cat, catmode_cat, cattype_cat, mcat_cat, xyzw_cat = [catf[x] for x in sorted(catf.keys())] # calculate degree of adaptationn D: if E is not None: if Yb is not None: La = (Yb/100.0)*(E/np.pi) else: La = E D = cat.get_degree_of_adaptation(Dtype = Dtype_cat, F = F, La = La) else: Dtype_cat = None # direct input of D if (E is None) and (D is None): D = 1.0 # set degree of adaptation to 1 ! if D > 1.0: D = 1.0 if D < 0.6: D = 0.6 # put a limit on the lowest D # apply cat: xyzti = cat.apply(xyzti, cattype = cattype_cat, catmode = catmode_cat, xyzw1 = xyztw,xyzw0 = None, xyzw2 = xyzw_cat, D = D, mcat = [mcat_cat], Dtype = Dtype_cat) xyztw = cat.apply(xyztw, cattype = cattype_cat, catmode = catmode_cat, xyzw1 = xyztw,xyzw0 = None, xyzw2 = xyzw_cat, D = D, mcat = [mcat_cat], Dtype = Dtype_cat) # C. convert xyz to ipt and split: ipt = xyz_to_ipt(xyzti, cieobs = cieobs['xyz'], M = Mxyz2lms) #input matrix as published in Smet et al. 2012, Energy and Buildings I,P,T = asplit(ipt) # D. calculate specific (hue dependent) similarity indicators, Si: if len(xyzti.shape) == 3: ai = np.expand_dims(similarity_ai, axis = 1) else: ai = similarity_ai a1,a2,a3,a4,a5 = asplit(ai) mahalanobis_d2 = (a3*np.power((P - a1),2.0) + a4*np.power((T - a2),2.0) + 2.0*a5*(P-a1)*(T-a2)) if (len(mahalanobis_d2.shape)==3) & (mahalanobis_d2.shape[-1]==1): mahalanobis_d2 = mahalanobis_d2[:,:,0].T Si = np.exp(-0.5*mahalanobis_d2) # E. calculate general similarity indicator, Sa: Sa = avg(Si, axis = 0,keepdims = True) # F. rescale similarity indicators (Si, Sa) with a 0-1 scale to memory color rendition indices (Rmi, Rm) with a 0 - 100 scale: Rmi = scale_fcn(np.log(Si),scale_factor = scale_factor) Rm = np2d(scale_fcn(np.log(Sa),scale_factor = scale_factor)) # G. calculate Rg (polyarea of test / polyarea of memory colours): if 'Rg' in out.split(','): I = I[...,None] #broadcast_shape(I, target_shape = None,expand_2d_to_3d = 0) a1 = a1[:,None]*np.ones(I.shape)#broadcast_shape(a1, target_shape = None,expand_2d_to_3d = 0) a2 = a2[:,None]*np.ones(I.shape) #broadcast_shape(a2, target_shape = None,expand_2d_to_3d = 0) a12 = np.concatenate((a1,a2),axis=2) #broadcast_shape(np.hstack((a1,a2)), target_shape = ipt.shape,expand_2d_to_3d = 0) ipt_mc = np.concatenate((I,a12),axis=2) nhbins, normalize_gamut, normalized_chroma_ref, start_hue = [rg_pars[x] for x in sorted(rg_pars.keys())] hue_bin_data = _get_hue_bin_data(ipt, ipt_mc, start_hue = start_hue, nhbins = nhbins, normalized_chroma_ref = normalized_chroma_ref) Rg = _hue_bin_data_to_rg(hue_bin_data) if (out != 'Rm'): return eval(out) else: return Rm
def ipt_to_xyz(ipt, cieobs=_CIEOBS, xyzw=None, M=None, **kwargs): """ Convert XYZ tristimulus values to IPT color coordinates. | I: Lightness axis, P, red-green axis, T: yellow-blue axis. Args: :ipt: | ndarray with IPT color coordinates :xyzw: | None or ndarray with tristimulus values of white point, optional | None defaults to xyz of CIE D65 using the :cieobs: observer. :cieobs: | luxpy._CIEOBS, optional | CMF set to use when calculating xyzw for rescaling Mxyz2lms | (only when not None). :M: | None, optional | None defaults to xyz to lms conversion matrix determined by:cieobs: Returns: :xyz: | ndarray with tristimulus values Note: :xyz: is assumed to be under D65 viewing conditions! If necessary perform chromatic adaptation ! Reference: 1. `Ebner F, and Fairchild MD (1998). Development and testing of a color space (IPT) with improved hue uniformity. In IS&T 6th Color Imaging Conference, (Scottsdale, Arizona, USA), pp. 8–13. <http://www.ingentaconnect.com/content/ist/cic/1998/00001998/00000001/art00003?crawler=true>`_ """ ipt = np2d(ipt) # get M to convert xyz to lms and apply normalization to matrix or input your own: if M is None: M = _IPT_M['xyz2lms'][cieobs].copy( ) # matrix conversions from xyz to lms if xyzw is None: xyzw = spd_to_xyz(_CIE_ILLUMINANTS['D65'], cieobs=cieobs, out=1) / 100.0 else: xyzw = xyzw / 100.0 M = math.normalize_3x3_matrix(M, xyzw) # convert from ipt to lms': if len(ipt.shape) == 3: lmsp = np.einsum('ij,klj->kli', np.linalg.inv(_IPT_M['lms2ipt']), ipt) else: lmsp = np.einsum('ij,lj->li', np.linalg.inv(_IPT_M['lms2ipt']), ipt) # reverse response compression: lms' to lms lms = lmsp**(1.0 / 0.43) p = np.where(lmsp < 0.0) lms[p] = -np.abs(lmsp[p])**(1.0 / 0.43) # convert from lms to xyz: if np.ndim(M) == 2: if len(ipt.shape) == 3: xyz = np.einsum('ij,klj->kli', np.linalg.inv(M), lms) else: xyz = np.einsum('ij,lj->li', np.linalg.inv(M), lms) else: if len( ipt.shape ) == 3: # second dim of lms must match dim of 1st of M and 1st dim of xyzw xyz = np.concatenate([ np.einsum('ij,klj->kli', np.linalg.inv(M[i]), lms[:, i:i + 1, :]) for i in range(M.shape[0]) ], axis=1) else: # first dim of lms must match dim of 1st of M and 1st dim of xyzw xyz = np.concatenate([ np.einsum('ij,lj->li', np.linalg.inv(M[i]), lms[i:i + 1, :]) for i in range(M.shape[0]) ], axis=0) #xyz = np.dot(np.linalg.inv(M),lms.T).T xyz = xyz * 100.0 xyz[np.where(xyz < 0.0)] = 0.0 return xyz
def spd_to_xyz(data, relative=True, rfl=None, cieobs=_CIEOBS, K=None, out=None, cie_std_dev_obs=None): """ Calculates xyz tristimulus values from spectral data. Args: :data: | ndarray or pandas.dataframe with spectral data | (.shape = (number of spectra + 1, number of wavelengths)) | Note that :data: is never interpolated, only CMFs and RFLs. | This way interpolation errors due to peaky spectra are avoided. | Conform CIE15-2018. :relative: | True or False, optional | Calculate relative XYZ (Yw = 100) or absolute XYZ (Y = Luminance) :rfl: | ndarray with spectral reflectance functions. | Will be interpolated if wavelengths do not match those of :data: :cieobs: | luxpy._CIEOBS or str, optional | Determines the color matching functions to be used in the | calculation of XYZ. :K: | None, optional | e.g. K = 683 lm/W for '1931_2' (relative == False) | or K = 100/sum(spd*dl) (relative == True) :out: | None or 1 or 2, optional | Determines number and shape of output. (see :returns:) :cie_std_dev_obs: | None or str, optional | - None: don't use CIE Standard Deviate Observer function. | - 'f1': use F1 function. Returns: :returns: | If rfl is None: | If out is None: ndarray of xyz values | (.shape = (data.shape[0],3)) | If out == 1: ndarray of xyz values | (.shape = (data.shape[0],3)) | If out == 2: (ndarray of xyz, ndarray of xyzw) values | Note that xyz == xyzw, with (.shape = (data.shape[0],3)) | If rfl is not None: | If out is None: ndarray of xyz values | (.shape = (rfl.shape[0],data.shape[0],3)) | If out == 1: ndarray of xyz values | (.shape = (rfl.shape[0]+1,data.shape[0],3)) | The xyzw values of the light source spd are the first set | of values of the first dimension. The following values | along this dimension are the sample (rfl) xyz values. | If out == 2: (ndarray of xyz, ndarray of xyzw) values | with xyz.shape = (rfl.shape[0],data.shape[0],3) | and with xyzw.shape = (data.shape[0],3) References: 1. `CIE15:2018, “Colorimetry,” CIE, Vienna, Austria, 2018. <https://doi.org/10.25039/TR.015.2018>`_ """ data = getdata(data, kind='np') if isinstance(data, pd.DataFrame) else np2d( data) # convert to np format and ensure 2D-array # get wl spacing: dl = getwld(data[0]) # get cmf,k for cieobs: if isinstance(cieobs, str): if K is None: K = _CMF[cieobs]['K'] scr = 'dict' else: scr = 'cieobs' if (K is None) & (relative == False): K = 1 # Interpolate to wl of data: cmf = xyzbar(cieobs=cieobs, scr=scr, wl_new=data[0], kind='np') # Add CIE standard deviate observer function to cmf if requested: if cie_std_dev_obs is not None: cmf_cie_std_dev_obs = xyzbar(cieobs='cie_std_dev_obs_' + cie_std_dev_obs.lower(), scr=scr, wl_new=data[0], kind='np') cmf[1:] = cmf[1:] + cmf_cie_std_dev_obs[1:] # Rescale xyz using k or 100/Yw: if relative == True: K = 100.0 / np.dot(data[1:], cmf[2, :] * dl) # Interpolate rfls to lambda range of spd and calculate xyz: if rfl is not None: rfl = cie_interp(data=np2d(rfl), wl_new=data[0], kind='rfl') rfl = np.concatenate((np.ones((1, data.shape[1])), rfl[1:])) #add rfl = 1 for light source spectrum xyz = K * np.array( [np.dot(rfl, (data[1:] * cmf[i + 1, :] * dl).T) for i in range(3)]) #calculate tristimulus values rflwasnotnone = 1 else: rfl = np.ones((1, data.shape[1])) xyz = (K * (np.dot((cmf[1:] * dl), data[1:].T))[:, None, :]) rflwasnotnone = 0 xyz = np.transpose(xyz, [1, 2, 0]) #order [rfl,spd,xyz] # Setup output: if out == 2: xyzw = xyz[0, ...] xyz = xyz[rflwasnotnone:, ...] if rflwasnotnone == 0: xyz = np.squeeze(xyz, axis=0) return xyz, xyzw elif out == 1: if rflwasnotnone == 0: xyz = np.squeeze(xyz, axis=0) return xyz else: xyz = xyz[rflwasnotnone:, ...] if rflwasnotnone == 0: xyz = np.squeeze(xyz, axis=0) return xyz