Exemplo n.º 1
0
def _dot_M_xyz(M,xyz):
    """
    Perform matrix multiplication between M and xyz (M*xyz) using einsum.
    
    Args:
        :xyz:
            | 2D or 3D ndarray
        :M:
            | 2D or 3D ndarray
            | if 2D: use same matrix M for each xyz, 
            | if 3D: use M[i] for xyz[i,:] (2D xyz) or xyz[:,i,:] (3D xyz)
            
    Returns:
        :M*xyz:
            | ndarray with same shape as xyz containing dot product of M and xyz.
    """
    # convert xyz to ...:
    if np.ndim(M)==2:
        if len(xyz.shape) == 3:
            return np.einsum('ij,klj->kli', M, xyz)
        else:
            return np.einsum('ij,lj->li', M, xyz)
    else:
        if len(xyz.shape) == 3: # second dim of x must match dim of 1st of M and 1st dim of xyzw
            return np.concatenate([np.einsum('ij,klj->kli', M[i], xyz[:,i:i+1,:]) for i in range(M.shape[0])],axis=1)
        else: # first dim of xyz must match dim of 1st of M and 1st dim of xyzw
            return np.concatenate([np.einsum('ij,lj->li', M[i], xyz[i:i+1,:]) for i in range(M.shape[0])],axis=0)
Exemplo n.º 2
0
 def join(self, data):
     """
     Join data along last axis and return instance.
     """
     if data[0].ndim == 2:  #faster implementation
         self.value = np.transpose(
             np.concatenate(data, axis=0).reshape((np.hstack(
                 (len(data), data[0].shape)))), (1, 2, 0))
     elif data[0].ndim == 1:
         self.value = np.concatenate(data, axis=0).reshape((np.hstack(
             (len(data), data[0].shape)))).T
     else:
         self.value = np.hstack(data)[0]
     return self
Exemplo n.º 3
0
def normalize_3x3_matrix(M, xyz0 = np.array([[1.0,1.0,1.0]])):
    """
    Normalize 3x3 matrix M to xyz0 -- > [1,1,1]
    
    | If M.shape == (1,9): M is reshaped to (3,3)
    
    Args:
        :M: 
            | ndarray((3,3) or ndarray((1,9))
        :xyz0: 
            | 2darray, optional 
        
    Returns:
        :returns: 
            | normalized matrix such that M*xyz0 = [1,1,1]
    """
    M = np2d(M)
    if M.shape[-1]==9:
        M = M.reshape(3,3)
    if xyz0.shape[0] == 1:
        return np.dot(np.diagflat(1/(np.dot(M,xyz0.T))),M)
    else:
        return np.concatenate([np.dot(np.diagflat(1/(np.dot(M,xyz0[1].T))),M) for i in range(xyz0.shape[0])],axis=0).reshape(xyz0.shape[0],3,3)
Exemplo n.º 4
0
def spd_to_mcri(SPD, D = 0.9, E = None, Yb = 20.0, out = 'Rm', wl = None):
    """
    Calculates the MCRI or Memory Color Rendition Index, Rm
    
    Args: 
        :SPD: 
            | ndarray with spectral data (can be multiple SPDs, 
            |  first axis are the wavelengths)
        :D: 
            | 0.9, optional
            | Degree of adaptation.
        :E: 
            | None, optional
            | Illuminance in lux 
            |  (used to calculate La = (Yb/100)*(E/pi) to then calculate D 
            |  following the 'cat02' model). 
            | If None: the degree is determined by :D:
            |  If (:E: is not None) & (:Yb: is None):  :E: is assumed to contain 
            |  the adapting field luminance La (cd/m²).
        :Yb: 
            | 20.0, optional
            | Luminance factor of background. (used when calculating La from E)
            | If None, E contains La (cd/m²).
        :out: 
            | 'Rm' or str, optional
            | Specifies requested output (e.g. 'Rm,Rmi,cct,duv') 
        :wl: 
            | None, optional
            | Wavelengths (or [start, end, spacing]) to interpolate the SPDs to. 
            | None: default to no interpolation   
    
    Returns:
        :returns: 
            | float or ndarray with MCRI Rm for :out: 'Rm'
            | Other output is also possible by changing the :out: str value.        
          
    References:
        1. `K.A.G. Smet, W.R. Ryckaert, M.R. Pointer, G. Deconinck, P. Hanselaer,(2012)
        “A memory colour quality metric for white light sources,” 
        Energy Build., vol. 49, no. C, pp. 216–225.
        <http://www.sciencedirect.com/science/article/pii/S0378778812000837>`_
    """
    SPD = np2d(SPD)
    
    if wl is not None: 
        SPD = spd(data = SPD, interpolation = _S_INTERP_TYPE, kind = 'np', wl = wl)
    
    
    # unpack metric default values:
    avg, catf, cieobs, cri_specific_pars, cspace, ref_type, rg_pars, sampleset, scale = [_MCRI_DEFAULTS[x] for x in sorted(_MCRI_DEFAULTS.keys())] 
    similarity_ai = cri_specific_pars['similarity_ai']
    Mxyz2lms = cspace['Mxyz2lms'] 
    scale_fcn = scale['fcn']
    scale_factor = scale['cfactor']
    sampleset = eval(sampleset)
    
    # A. calculate xyz:
    xyzti, xyztw = spd_to_xyz(SPD, cieobs = cieobs['xyz'],  rfl = sampleset, out = 2)
    if 'cct' in out.split(','):
        cct, duv = xyz_to_cct(xyztw, cieobs = cieobs['cct'], out = 'cct,duv',mode = 'lut')
        
    # B. perform chromatic adaptation to adopted whitepoint of ipt color space, i.e. D65:
    if catf is not None:
        Dtype_cat, F, Yb_cat, catmode_cat, cattype_cat, mcat_cat, xyzw_cat = [catf[x] for x in sorted(catf.keys())]
        
        # calculate degree of adaptationn D:
        if E is not None:
            if Yb is not None:
                La = (Yb/100.0)*(E/np.pi)
            else:
                La = E
            D = cat.get_degree_of_adaptation(Dtype = Dtype_cat, F = F, La = La)
        else:
            Dtype_cat = None # direct input of D

        if (E is None) and (D is None):
            D = 1.0 # set degree of adaptation to 1 !
        if D > 1.0: D = 1.0
        if D < 0.6: D = 0.6 # put a limit on the lowest D

        # apply cat:
        xyzti = cat.apply(xyzti, cattype = cattype_cat, catmode = catmode_cat, xyzw1 = xyztw,xyzw0 = None, xyzw2 = xyzw_cat, D = D, mcat = [mcat_cat], Dtype = Dtype_cat)
        xyztw = cat.apply(xyztw, cattype = cattype_cat, catmode = catmode_cat, xyzw1 = xyztw,xyzw0 = None, xyzw2 = xyzw_cat, D = D, mcat = [mcat_cat], Dtype = Dtype_cat)
     
    # C. convert xyz to ipt and split:
    ipt = xyz_to_ipt(xyzti, cieobs = cieobs['xyz'], M = Mxyz2lms) #input matrix as published in Smet et al. 2012, Energy and Buildings
    I,P,T = asplit(ipt)  

    # D. calculate specific (hue dependent) similarity indicators, Si:
    if len(xyzti.shape) == 3:
        ai = np.expand_dims(similarity_ai, axis = 1)
    else: 
        ai = similarity_ai
    a1,a2,a3,a4,a5 = asplit(ai)
    mahalanobis_d2 = (a3*np.power((P - a1),2.0) + a4*np.power((T - a2),2.0) + 2.0*a5*(P-a1)*(T-a2))
    if (len(mahalanobis_d2.shape)==3) & (mahalanobis_d2.shape[-1]==1):
        mahalanobis_d2 = mahalanobis_d2[:,:,0].T
    Si = np.exp(-0.5*mahalanobis_d2)

    # E. calculate general similarity indicator, Sa:
    Sa = avg(Si, axis = 0,keepdims = True)

    # F. rescale similarity indicators (Si, Sa) with a 0-1 scale to memory color rendition indices (Rmi, Rm) with a 0 - 100 scale:
    Rmi = scale_fcn(np.log(Si),scale_factor = scale_factor)
    Rm = np2d(scale_fcn(np.log(Sa),scale_factor = scale_factor))

    # G. calculate Rg (polyarea of test / polyarea of memory colours):
    if 'Rg' in out.split(','):
        I = I[...,None] #broadcast_shape(I, target_shape = None,expand_2d_to_3d = 0)
        a1 = a1[:,None]*np.ones(I.shape)#broadcast_shape(a1, target_shape = None,expand_2d_to_3d = 0)
        a2 = a2[:,None]*np.ones(I.shape) #broadcast_shape(a2, target_shape = None,expand_2d_to_3d = 0)
        a12 = np.concatenate((a1,a2),axis=2) #broadcast_shape(np.hstack((a1,a2)), target_shape = ipt.shape,expand_2d_to_3d = 0)
        ipt_mc = np.concatenate((I,a12),axis=2)
        nhbins, normalize_gamut, normalized_chroma_ref, start_hue  = [rg_pars[x] for x in sorted(rg_pars.keys())]
    
        hue_bin_data = _get_hue_bin_data(ipt, ipt_mc, 
                                         start_hue = start_hue, nhbins = nhbins,
                                         normalized_chroma_ref = normalized_chroma_ref)
        Rg = _hue_bin_data_to_rg(hue_bin_data)

    if (out != 'Rm'):
        return  eval(out)
    else:
        return Rm
Exemplo n.º 5
0
def ipt_to_xyz(ipt, cieobs=_CIEOBS, xyzw=None, M=None, **kwargs):
    """
    Convert XYZ tristimulus values to IPT color coordinates.

    | I: Lightness axis, P, red-green axis, T: yellow-blue axis.

    Args:
        :ipt: 
            | ndarray with IPT color coordinates
        :xyzw:
            | None or ndarray with tristimulus values of white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating xyzw for rescaling Mxyz2lms
            | (only when not None).
        :M: | None, optional
            | None defaults to xyz to lms conversion matrix determined by:cieobs:

    Returns:
        :xyz: 
            | ndarray with tristimulus values

    Note:
        :xyz: is assumed to be under D65 viewing conditions! If necessary perform chromatic adaptation !

    Reference:
        1. `Ebner F, and Fairchild MD (1998).
           Development and testing of a color space (IPT) with improved hue uniformity.
           In IS&T 6th Color Imaging Conference, (Scottsdale, Arizona, USA), pp. 8–13.
           <http://www.ingentaconnect.com/content/ist/cic/1998/00001998/00000001/art00003?crawler=true>`_
    """
    ipt = np2d(ipt)

    # get M to convert xyz to lms and apply normalization to matrix or input your own:
    if M is None:
        M = _IPT_M['xyz2lms'][cieobs].copy(
        )  # matrix conversions from xyz to lms
        if xyzw is None:
            xyzw = spd_to_xyz(_CIE_ILLUMINANTS['D65'], cieobs=cieobs,
                              out=1) / 100.0
        else:
            xyzw = xyzw / 100.0
        M = math.normalize_3x3_matrix(M, xyzw)

    # convert from ipt to lms':
    if len(ipt.shape) == 3:
        lmsp = np.einsum('ij,klj->kli', np.linalg.inv(_IPT_M['lms2ipt']), ipt)
    else:
        lmsp = np.einsum('ij,lj->li', np.linalg.inv(_IPT_M['lms2ipt']), ipt)

    # reverse response compression: lms' to lms
    lms = lmsp**(1.0 / 0.43)
    p = np.where(lmsp < 0.0)
    lms[p] = -np.abs(lmsp[p])**(1.0 / 0.43)

    # convert from lms to xyz:
    if np.ndim(M) == 2:
        if len(ipt.shape) == 3:
            xyz = np.einsum('ij,klj->kli', np.linalg.inv(M), lms)
        else:
            xyz = np.einsum('ij,lj->li', np.linalg.inv(M), lms)
    else:
        if len(
                ipt.shape
        ) == 3:  # second dim of lms must match dim of 1st of M and 1st dim of xyzw
            xyz = np.concatenate([
                np.einsum('ij,klj->kli', np.linalg.inv(M[i]),
                          lms[:, i:i + 1, :]) for i in range(M.shape[0])
            ],
                                 axis=1)
        else:  # first dim of lms must match dim of 1st of M and 1st dim of xyzw
            xyz = np.concatenate([
                np.einsum('ij,lj->li', np.linalg.inv(M[i]), lms[i:i + 1, :])
                for i in range(M.shape[0])
            ],
                                 axis=0)

    #xyz = np.dot(np.linalg.inv(M),lms.T).T
    xyz = xyz * 100.0
    xyz[np.where(xyz < 0.0)] = 0.0

    return xyz
Exemplo n.º 6
0
def spd_to_xyz(data,
               relative=True,
               rfl=None,
               cieobs=_CIEOBS,
               K=None,
               out=None,
               cie_std_dev_obs=None):
    """
    Calculates xyz tristimulus values from spectral data.
       
    Args: 
        :data: 
            | ndarray or pandas.dataframe with spectral data
            | (.shape = (number of spectra + 1, number of wavelengths))
            | Note that :data: is never interpolated, only CMFs and RFLs. 
            | This way interpolation errors due to peaky spectra are avoided. 
            | Conform CIE15-2018.
        :relative: 
            | True or False, optional
            | Calculate relative XYZ (Yw = 100) or absolute XYZ (Y = Luminance)
        :rfl: 
            | ndarray with spectral reflectance functions.
            | Will be interpolated if wavelengths do not match those of :data:
        :cieobs:
            | luxpy._CIEOBS or str, optional
            | Determines the color matching functions to be used in the 
            | calculation of XYZ.
        :K: 
            | None, optional
            |   e.g.  K  = 683 lm/W for '1931_2' (relative == False) 
            |   or K = 100/sum(spd*dl)        (relative == True)
        :out:
            | None or 1 or 2, optional
            | Determines number and shape of output. (see :returns:)
        :cie_std_dev_obs: 
            | None or str, optional
            | - None: don't use CIE Standard Deviate Observer function.
            | - 'f1': use F1 function.
    
    Returns:
        :returns:
            | If rfl is None:
            |    If out is None: ndarray of xyz values 
            |        (.shape = (data.shape[0],3))
            |    If out == 1: ndarray of xyz values 
            |        (.shape = (data.shape[0],3))
            |    If out == 2: (ndarray of xyz, ndarray of xyzw) values
            |        Note that xyz == xyzw, with (.shape = (data.shape[0],3))
            | If rfl is not None:
            |   If out is None: ndarray of xyz values 
            |         (.shape = (rfl.shape[0],data.shape[0],3))
            |   If out == 1: ndarray of xyz values 
            |       (.shape = (rfl.shape[0]+1,data.shape[0],3))
            |        The xyzw values of the light source spd are the first set 
            |        of values of the first dimension. The following values 
            |       along this dimension are the sample (rfl) xyz values.
            |    If out == 2: (ndarray of xyz, ndarray of xyzw) values
            |        with xyz.shape = (rfl.shape[0],data.shape[0],3)
            |        and with xyzw.shape = (data.shape[0],3)
             
    References:
        1. `CIE15:2018, “Colorimetry,” CIE, Vienna, Austria, 2018. <https://doi.org/10.25039/TR.015.2018>`_
    """

    data = getdata(data,
                   kind='np') if isinstance(data, pd.DataFrame) else np2d(
                       data)  # convert to np format and ensure 2D-array

    # get wl spacing:
    dl = getwld(data[0])

    # get cmf,k for cieobs:
    if isinstance(cieobs, str):
        if K is None: K = _CMF[cieobs]['K']
        scr = 'dict'
    else:
        scr = 'cieobs'
        if (K is None) & (relative == False): K = 1

    # Interpolate to wl of data:
    cmf = xyzbar(cieobs=cieobs, scr=scr, wl_new=data[0], kind='np')

    # Add CIE standard deviate observer function to cmf if requested:
    if cie_std_dev_obs is not None:
        cmf_cie_std_dev_obs = xyzbar(cieobs='cie_std_dev_obs_' +
                                     cie_std_dev_obs.lower(),
                                     scr=scr,
                                     wl_new=data[0],
                                     kind='np')
        cmf[1:] = cmf[1:] + cmf_cie_std_dev_obs[1:]

    # Rescale xyz using k or 100/Yw:
    if relative == True: K = 100.0 / np.dot(data[1:], cmf[2, :] * dl)

    # Interpolate rfls to lambda range of spd and calculate xyz:
    if rfl is not None:
        rfl = cie_interp(data=np2d(rfl), wl_new=data[0], kind='rfl')
        rfl = np.concatenate((np.ones((1, data.shape[1])),
                              rfl[1:]))  #add rfl = 1 for light source spectrum
        xyz = K * np.array(
            [np.dot(rfl, (data[1:] * cmf[i + 1, :] * dl).T)
             for i in range(3)])  #calculate tristimulus values
        rflwasnotnone = 1
    else:
        rfl = np.ones((1, data.shape[1]))
        xyz = (K * (np.dot((cmf[1:] * dl), data[1:].T))[:, None, :])
        rflwasnotnone = 0
    xyz = np.transpose(xyz, [1, 2, 0])  #order [rfl,spd,xyz]

    # Setup output:
    if out == 2:
        xyzw = xyz[0, ...]
        xyz = xyz[rflwasnotnone:, ...]
        if rflwasnotnone == 0: xyz = np.squeeze(xyz, axis=0)
        return xyz, xyzw
    elif out == 1:
        if rflwasnotnone == 0: xyz = np.squeeze(xyz, axis=0)
        return xyz
    else:
        xyz = xyz[rflwasnotnone:, ...]
        if rflwasnotnone == 0: xyz = np.squeeze(xyz, axis=0)
        return xyz