def _get_model(self, box_predictor, **common_kwargs): return rfcn_meta_arch.RFCNMetaArch( second_stage_rfcn_box_predictor=box_predictor, **common_kwargs)
def _build_faster_rcnn_model(frcnn_config, is_training): """Builds a Faster R-CNN or R-FCN detection model based on the model config. Builds R-FCN model if the second_stage_box_predictor in the config is of type `rfcn_box_predictor` else builds a Faster R-CNN model. Args: frcnn_config: A faster_rcnn.proto object containing the config for the desired FasterRCNNMetaArch or RFCNMetaArch. is_training: True if this model is being built for training purposes. Returns: FasterRCNNMetaArch based on the config. Raises: ValueError: If frcnn_config.type is not recognized (i.e. not registered in model_class_map). """ num_classes = frcnn_config.num_classes image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer) feature_extractor = _build_faster_rcnn_feature_extractor( frcnn_config.feature_extractor, is_training) first_stage_only = frcnn_config.first_stage_only first_stage_anchor_generator = anchor_generator_builder.build( frcnn_config.first_stage_anchor_generator) first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate first_stage_box_predictor_arg_scope = hyperparams_builder.build( frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training) first_stage_box_predictor_kernel_size = ( frcnn_config.first_stage_box_predictor_kernel_size) first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size first_stage_positive_balance_fraction = ( frcnn_config.first_stage_positive_balance_fraction) first_stage_nms_score_threshold = frcnn_config.first_stage_nms_score_threshold first_stage_nms_iou_threshold = frcnn_config.first_stage_nms_iou_threshold first_stage_max_proposals = frcnn_config.first_stage_max_proposals first_stage_loc_loss_weight = ( frcnn_config.first_stage_localization_loss_weight) first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight initial_crop_size = frcnn_config.initial_crop_size maxpool_kernel_size = frcnn_config.maxpool_kernel_size maxpool_stride = frcnn_config.maxpool_stride second_stage_box_predictor = box_predictor_builder.build( hyperparams_builder.build, frcnn_config.second_stage_box_predictor, is_training=is_training, num_classes=num_classes) second_stage_batch_size = frcnn_config.second_stage_batch_size second_stage_balance_fraction = frcnn_config.second_stage_balance_fraction (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn ) = post_processing_builder.build(frcnn_config.second_stage_post_processing) second_stage_localization_loss_weight = ( frcnn_config.second_stage_localization_loss_weight) second_stage_classification_loss_weight = ( frcnn_config.second_stage_classification_loss_weight) hard_example_miner = None if frcnn_config.HasField('hard_example_miner'): hard_example_miner = losses_builder.build_hard_example_miner( frcnn_config.hard_example_miner, second_stage_classification_loss_weight, second_stage_localization_loss_weight) common_kwargs = { 'is_training': is_training, 'num_classes': num_classes, 'image_resizer_fn': image_resizer_fn, 'feature_extractor': feature_extractor, 'first_stage_only': first_stage_only, 'first_stage_anchor_generator': first_stage_anchor_generator, 'first_stage_atrous_rate': first_stage_atrous_rate, 'first_stage_box_predictor_arg_scope': first_stage_box_predictor_arg_scope, 'first_stage_box_predictor_kernel_size': first_stage_box_predictor_kernel_size, 'first_stage_box_predictor_depth': first_stage_box_predictor_depth, 'first_stage_minibatch_size': first_stage_minibatch_size, 'first_stage_positive_balance_fraction': first_stage_positive_balance_fraction, 'first_stage_nms_score_threshold': first_stage_nms_score_threshold, 'first_stage_nms_iou_threshold': first_stage_nms_iou_threshold, 'first_stage_max_proposals': first_stage_max_proposals, 'first_stage_localization_loss_weight': first_stage_loc_loss_weight, 'first_stage_objectness_loss_weight': first_stage_obj_loss_weight, 'second_stage_batch_size': second_stage_batch_size, 'second_stage_balance_fraction': second_stage_balance_fraction, 'second_stage_non_max_suppression_fn': second_stage_non_max_suppression_fn, 'second_stage_score_conversion_fn': second_stage_score_conversion_fn, 'second_stage_localization_loss_weight': second_stage_localization_loss_weight, 'second_stage_classification_loss_weight': second_stage_classification_loss_weight, 'hard_example_miner': hard_example_miner} if isinstance(second_stage_box_predictor, box_predictor.RfcnBoxPredictor): return rfcn_meta_arch.RFCNMetaArch( second_stage_rfcn_box_predictor=second_stage_box_predictor, **common_kwargs) else: return faster_rcnn_meta_arch.FasterRCNNMetaArch( initial_crop_size=initial_crop_size, maxpool_kernel_size=maxpool_kernel_size, maxpool_stride=maxpool_stride, second_stage_mask_rcnn_box_predictor=second_stage_box_predictor, **common_kwargs)
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries): """Builds a Faster R-CNN or R-FCN detection model based on the model config. Builds R-FCN model if the second_stage_box_predictor in the config is of type `rfcn_box_predictor` else builds a Faster R-CNN model. Args: frcnn_config: A faster_rcnn.proto object containing the config for the desired FasterRCNNMetaArch or RFCNMetaArch. is_training: True if this model is being built for training purposes. add_summaries: Whether to add tf summaries in the model. Returns: FasterRCNNMetaArch based on the config. Raises: ValueError: If frcnn_config.type is not recognized (i.e. not registered in model_class_map). """ num_classes = frcnn_config.num_classes image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer) feature_extractor = _build_faster_rcnn_feature_extractor( frcnn_config.feature_extractor, is_training, inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update) number_of_stages = frcnn_config.number_of_stages first_stage_anchor_generator = anchor_generator_builder.build( frcnn_config.first_stage_anchor_generator) first_stage_target_assigner = target_assigner.create_target_assigner( 'FasterRCNN', 'proposal', use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher) first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build( frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training) first_stage_box_predictor_kernel_size = ( frcnn_config.first_stage_box_predictor_kernel_size) first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size use_static_shapes = frcnn_config.use_static_shapes and ( frcnn_config.use_static_shapes_for_eval or is_training) first_stage_sampler = sampler.BalancedPositiveNegativeSampler( positive_fraction=frcnn_config.first_stage_positive_balance_fraction, is_static=(frcnn_config.use_static_balanced_label_sampler and use_static_shapes)) first_stage_max_proposals = frcnn_config.first_stage_max_proposals if (frcnn_config.first_stage_nms_iou_threshold < 0 or frcnn_config.first_stage_nms_iou_threshold > 1.0): raise ValueError('iou_threshold not in [0, 1.0].') if (is_training and frcnn_config.second_stage_batch_size > first_stage_max_proposals): raise ValueError('second_stage_batch_size should be no greater than ' 'first_stage_max_proposals.') first_stage_non_max_suppression_fn = functools.partial( post_processing.batch_multiclass_non_max_suppression, score_thresh=frcnn_config.first_stage_nms_score_threshold, iou_thresh=frcnn_config.first_stage_nms_iou_threshold, max_size_per_class=frcnn_config.first_stage_max_proposals, max_total_size=frcnn_config.first_stage_max_proposals, use_static_shapes=use_static_shapes) first_stage_loc_loss_weight = ( frcnn_config.first_stage_localization_loss_weight) first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight initial_crop_size = frcnn_config.initial_crop_size maxpool_kernel_size = frcnn_config.maxpool_kernel_size maxpool_stride = frcnn_config.maxpool_stride second_stage_target_assigner = target_assigner.create_target_assigner( 'FasterRCNN', 'detection', use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher) second_stage_box_predictor = box_predictor_builder.build( hyperparams_builder.build, frcnn_config.second_stage_box_predictor, is_training=is_training, num_classes=num_classes) second_stage_batch_size = frcnn_config.second_stage_batch_size second_stage_sampler = sampler.BalancedPositiveNegativeSampler( positive_fraction=frcnn_config.second_stage_balance_fraction, is_static=(frcnn_config.use_static_balanced_label_sampler and use_static_shapes)) (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn) = post_processing_builder.build( frcnn_config.second_stage_post_processing) second_stage_localization_loss_weight = ( frcnn_config.second_stage_localization_loss_weight) second_stage_classification_loss = ( losses_builder.build_faster_rcnn_classification_loss( frcnn_config.second_stage_classification_loss)) second_stage_classification_loss_weight = ( frcnn_config.second_stage_classification_loss_weight) second_stage_mask_prediction_loss_weight = ( frcnn_config.second_stage_mask_prediction_loss_weight) hard_example_miner = None if frcnn_config.HasField('hard_example_miner'): hard_example_miner = losses_builder.build_hard_example_miner( frcnn_config.hard_example_miner, second_stage_classification_loss_weight, second_stage_localization_loss_weight) crop_and_resize_fn = (ops.matmul_crop_and_resize if frcnn_config.use_matmul_crop_and_resize else ops.native_crop_and_resize) clip_anchors_to_image = (frcnn_config.clip_anchors_to_image) common_kwargs = { 'is_training': is_training, 'num_classes': num_classes, 'image_resizer_fn': image_resizer_fn, 'feature_extractor': feature_extractor, 'number_of_stages': number_of_stages, 'first_stage_anchor_generator': first_stage_anchor_generator, 'first_stage_target_assigner': first_stage_target_assigner, 'first_stage_atrous_rate': first_stage_atrous_rate, 'first_stage_box_predictor_arg_scope_fn': first_stage_box_predictor_arg_scope_fn, 'first_stage_box_predictor_kernel_size': first_stage_box_predictor_kernel_size, 'first_stage_box_predictor_depth': first_stage_box_predictor_depth, 'first_stage_minibatch_size': first_stage_minibatch_size, 'first_stage_sampler': first_stage_sampler, 'first_stage_non_max_suppression_fn': first_stage_non_max_suppression_fn, 'first_stage_max_proposals': first_stage_max_proposals, 'first_stage_localization_loss_weight': first_stage_loc_loss_weight, 'first_stage_objectness_loss_weight': first_stage_obj_loss_weight, 'second_stage_target_assigner': second_stage_target_assigner, 'second_stage_batch_size': second_stage_batch_size, 'second_stage_sampler': second_stage_sampler, 'second_stage_non_max_suppression_fn': second_stage_non_max_suppression_fn, 'second_stage_score_conversion_fn': second_stage_score_conversion_fn, 'second_stage_localization_loss_weight': second_stage_localization_loss_weight, 'second_stage_classification_loss': second_stage_classification_loss, 'second_stage_classification_loss_weight': second_stage_classification_loss_weight, 'hard_example_miner': hard_example_miner, 'add_summaries': add_summaries, 'crop_and_resize_fn': crop_and_resize_fn, 'clip_anchors_to_image': clip_anchors_to_image, 'use_static_shapes': use_static_shapes, 'resize_masks': frcnn_config.resize_masks } if isinstance(second_stage_box_predictor, rfcn_box_predictor.RfcnBoxPredictor): return rfcn_meta_arch.RFCNMetaArch( second_stage_rfcn_box_predictor=second_stage_box_predictor, **common_kwargs) else: return faster_rcnn_meta_arch.FasterRCNNMetaArch( initial_crop_size=initial_crop_size, maxpool_kernel_size=maxpool_kernel_size, maxpool_stride=maxpool_stride, second_stage_mask_rcnn_box_predictor=second_stage_box_predictor, second_stage_mask_prediction_loss_weight=( second_stage_mask_prediction_loss_weight), **common_kwargs)