def _get_model(self, box_predictor, **common_kwargs):
     return rfcn_meta_arch.RFCNMetaArch(
         second_stage_rfcn_box_predictor=box_predictor, **common_kwargs)
Exemple #2
0
def _build_faster_rcnn_model(frcnn_config, is_training):
    """Builds a Faster R-CNN or R-FCN detection model based on the model config.

    Builds R-FCN model if the second_stage_box_predictor in the config is of type
    `rfcn_box_predictor` else builds a Faster R-CNN model.

    Args:
      frcnn_config: A faster_rcnn.proto object containing the config for the
      desired FasterRCNNMetaArch or RFCNMetaArch.
      is_training: True if this model is being built for training purposes.

    Returns:
      FasterRCNNMetaArch based on the config.
    Raises:
      ValueError: If frcnn_config.type is not recognized (i.e. not registered in
        model_class_map).
    """
    num_classes = frcnn_config.num_classes
    image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)

    feature_extractor = _build_faster_rcnn_feature_extractor(
        frcnn_config.feature_extractor, is_training)

    first_stage_only = frcnn_config.first_stage_only
    first_stage_anchor_generator = anchor_generator_builder.build(
        frcnn_config.first_stage_anchor_generator)

    first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
    first_stage_box_predictor_arg_scope = hyperparams_builder.build(
        frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
    first_stage_box_predictor_kernel_size = (
        frcnn_config.first_stage_box_predictor_kernel_size)
    first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
    first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
    first_stage_positive_balance_fraction = (
        frcnn_config.first_stage_positive_balance_fraction)
    first_stage_nms_score_threshold = frcnn_config.first_stage_nms_score_threshold
    first_stage_nms_iou_threshold = frcnn_config.first_stage_nms_iou_threshold
    first_stage_max_proposals = frcnn_config.first_stage_max_proposals
    first_stage_loc_loss_weight = (
        frcnn_config.first_stage_localization_loss_weight)
    first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

    initial_crop_size = frcnn_config.initial_crop_size
    maxpool_kernel_size = frcnn_config.maxpool_kernel_size
    maxpool_stride = frcnn_config.maxpool_stride

    second_stage_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build,
        frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
    second_stage_batch_size = frcnn_config.second_stage_batch_size
    second_stage_balance_fraction = frcnn_config.second_stage_balance_fraction
    (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
     ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
    second_stage_localization_loss_weight = (
        frcnn_config.second_stage_localization_loss_weight)
    second_stage_classification_loss_weight = (
        frcnn_config.second_stage_classification_loss_weight)

    hard_example_miner = None
    if frcnn_config.HasField('hard_example_miner'):
        hard_example_miner = losses_builder.build_hard_example_miner(
            frcnn_config.hard_example_miner,
            second_stage_classification_loss_weight,
            second_stage_localization_loss_weight)

    common_kwargs = {
        'is_training': is_training,
        'num_classes': num_classes,
        'image_resizer_fn': image_resizer_fn,
        'feature_extractor': feature_extractor,
        'first_stage_only': first_stage_only,
        'first_stage_anchor_generator': first_stage_anchor_generator,
        'first_stage_atrous_rate': first_stage_atrous_rate,
        'first_stage_box_predictor_arg_scope':
            first_stage_box_predictor_arg_scope,
        'first_stage_box_predictor_kernel_size':
            first_stage_box_predictor_kernel_size,
        'first_stage_box_predictor_depth': first_stage_box_predictor_depth,
        'first_stage_minibatch_size': first_stage_minibatch_size,
        'first_stage_positive_balance_fraction':
            first_stage_positive_balance_fraction,
        'first_stage_nms_score_threshold': first_stage_nms_score_threshold,
        'first_stage_nms_iou_threshold': first_stage_nms_iou_threshold,
        'first_stage_max_proposals': first_stage_max_proposals,
        'first_stage_localization_loss_weight': first_stage_loc_loss_weight,
        'first_stage_objectness_loss_weight': first_stage_obj_loss_weight,
        'second_stage_batch_size': second_stage_batch_size,
        'second_stage_balance_fraction': second_stage_balance_fraction,
        'second_stage_non_max_suppression_fn':
            second_stage_non_max_suppression_fn,
        'second_stage_score_conversion_fn': second_stage_score_conversion_fn,
        'second_stage_localization_loss_weight':
            second_stage_localization_loss_weight,
        'second_stage_classification_loss_weight':
            second_stage_classification_loss_weight,
        'hard_example_miner': hard_example_miner}

    if isinstance(second_stage_box_predictor, box_predictor.RfcnBoxPredictor):
        return rfcn_meta_arch.RFCNMetaArch(
            second_stage_rfcn_box_predictor=second_stage_box_predictor,
            **common_kwargs)
    else:
        return faster_rcnn_meta_arch.FasterRCNNMetaArch(
            initial_crop_size=initial_crop_size,
            maxpool_kernel_size=maxpool_kernel_size,
            maxpool_stride=maxpool_stride,
            second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
            **common_kwargs)
Exemple #3
0
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
    """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
      desired FasterRCNNMetaArch or RFCNMetaArch.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.

  Returns:
    FasterRCNNMetaArch based on the config.

  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
    num_classes = frcnn_config.num_classes
    image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)

    feature_extractor = _build_faster_rcnn_feature_extractor(
        frcnn_config.feature_extractor,
        is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)

    number_of_stages = frcnn_config.number_of_stages
    first_stage_anchor_generator = anchor_generator_builder.build(
        frcnn_config.first_stage_anchor_generator)

    first_stage_target_assigner = target_assigner.create_target_assigner(
        'FasterRCNN',
        'proposal',
        use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
    first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
    first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
        frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
    first_stage_box_predictor_kernel_size = (
        frcnn_config.first_stage_box_predictor_kernel_size)
    first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
    first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
    use_static_shapes = frcnn_config.use_static_shapes and (
        frcnn_config.use_static_shapes_for_eval or is_training)
    first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
        positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
        is_static=(frcnn_config.use_static_balanced_label_sampler
                   and use_static_shapes))
    first_stage_max_proposals = frcnn_config.first_stage_max_proposals
    if (frcnn_config.first_stage_nms_iou_threshold < 0
            or frcnn_config.first_stage_nms_iou_threshold > 1.0):
        raise ValueError('iou_threshold not in [0, 1.0].')
    if (is_training and
            frcnn_config.second_stage_batch_size > first_stage_max_proposals):
        raise ValueError('second_stage_batch_size should be no greater than '
                         'first_stage_max_proposals.')
    first_stage_non_max_suppression_fn = functools.partial(
        post_processing.batch_multiclass_non_max_suppression,
        score_thresh=frcnn_config.first_stage_nms_score_threshold,
        iou_thresh=frcnn_config.first_stage_nms_iou_threshold,
        max_size_per_class=frcnn_config.first_stage_max_proposals,
        max_total_size=frcnn_config.first_stage_max_proposals,
        use_static_shapes=use_static_shapes)
    first_stage_loc_loss_weight = (
        frcnn_config.first_stage_localization_loss_weight)
    first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

    initial_crop_size = frcnn_config.initial_crop_size
    maxpool_kernel_size = frcnn_config.maxpool_kernel_size
    maxpool_stride = frcnn_config.maxpool_stride

    second_stage_target_assigner = target_assigner.create_target_assigner(
        'FasterRCNN',
        'detection',
        use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
    second_stage_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build,
        frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
    second_stage_batch_size = frcnn_config.second_stage_batch_size
    second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
        positive_fraction=frcnn_config.second_stage_balance_fraction,
        is_static=(frcnn_config.use_static_balanced_label_sampler
                   and use_static_shapes))
    (second_stage_non_max_suppression_fn,
     second_stage_score_conversion_fn) = post_processing_builder.build(
         frcnn_config.second_stage_post_processing)
    second_stage_localization_loss_weight = (
        frcnn_config.second_stage_localization_loss_weight)
    second_stage_classification_loss = (
        losses_builder.build_faster_rcnn_classification_loss(
            frcnn_config.second_stage_classification_loss))
    second_stage_classification_loss_weight = (
        frcnn_config.second_stage_classification_loss_weight)
    second_stage_mask_prediction_loss_weight = (
        frcnn_config.second_stage_mask_prediction_loss_weight)

    hard_example_miner = None
    if frcnn_config.HasField('hard_example_miner'):
        hard_example_miner = losses_builder.build_hard_example_miner(
            frcnn_config.hard_example_miner,
            second_stage_classification_loss_weight,
            second_stage_localization_loss_weight)

    crop_and_resize_fn = (ops.matmul_crop_and_resize
                          if frcnn_config.use_matmul_crop_and_resize else
                          ops.native_crop_and_resize)
    clip_anchors_to_image = (frcnn_config.clip_anchors_to_image)

    common_kwargs = {
        'is_training': is_training,
        'num_classes': num_classes,
        'image_resizer_fn': image_resizer_fn,
        'feature_extractor': feature_extractor,
        'number_of_stages': number_of_stages,
        'first_stage_anchor_generator': first_stage_anchor_generator,
        'first_stage_target_assigner': first_stage_target_assigner,
        'first_stage_atrous_rate': first_stage_atrous_rate,
        'first_stage_box_predictor_arg_scope_fn':
        first_stage_box_predictor_arg_scope_fn,
        'first_stage_box_predictor_kernel_size':
        first_stage_box_predictor_kernel_size,
        'first_stage_box_predictor_depth': first_stage_box_predictor_depth,
        'first_stage_minibatch_size': first_stage_minibatch_size,
        'first_stage_sampler': first_stage_sampler,
        'first_stage_non_max_suppression_fn':
        first_stage_non_max_suppression_fn,
        'first_stage_max_proposals': first_stage_max_proposals,
        'first_stage_localization_loss_weight': first_stage_loc_loss_weight,
        'first_stage_objectness_loss_weight': first_stage_obj_loss_weight,
        'second_stage_target_assigner': second_stage_target_assigner,
        'second_stage_batch_size': second_stage_batch_size,
        'second_stage_sampler': second_stage_sampler,
        'second_stage_non_max_suppression_fn':
        second_stage_non_max_suppression_fn,
        'second_stage_score_conversion_fn': second_stage_score_conversion_fn,
        'second_stage_localization_loss_weight':
        second_stage_localization_loss_weight,
        'second_stage_classification_loss': second_stage_classification_loss,
        'second_stage_classification_loss_weight':
        second_stage_classification_loss_weight,
        'hard_example_miner': hard_example_miner,
        'add_summaries': add_summaries,
        'crop_and_resize_fn': crop_and_resize_fn,
        'clip_anchors_to_image': clip_anchors_to_image,
        'use_static_shapes': use_static_shapes,
        'resize_masks': frcnn_config.resize_masks
    }

    if isinstance(second_stage_box_predictor,
                  rfcn_box_predictor.RfcnBoxPredictor):
        return rfcn_meta_arch.RFCNMetaArch(
            second_stage_rfcn_box_predictor=second_stage_box_predictor,
            **common_kwargs)
    else:
        return faster_rcnn_meta_arch.FasterRCNNMetaArch(
            initial_crop_size=initial_crop_size,
            maxpool_kernel_size=maxpool_kernel_size,
            maxpool_stride=maxpool_stride,
            second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
            second_stage_mask_prediction_loss_weight=(
                second_stage_mask_prediction_loss_weight),
            **common_kwargs)