Example #1
0
def create_train_model(hyper, **kwargs):
    model_setup = dict(
        g=tf.Graph(),
        # per_process_gpu_memory_fraction=0.6,
        # n_samples_per_ref=3,
        block_size_x=8 * 3 * 50 // 2,
        block_size_y=80,
        num_blocks=1,
        batch_size=32,
        max_reach=8 * 20,  # 160
        queue_cap=300,
        overwrite=False,
        reuse=False,
        shrink_factor=8,
        dtype=tf.float32,
        model_fn=model_fn,
        in_data=input_readers.MinCallAlignedRaw(),
        lr_fn=lambda global_step: tf.train.exponential_decay(
            hyper['initial_lr'], global_step, 100000, hyper['decay_factor']),
        hyper=hyper,
    )
    model_setup.update(kwargs)
    return Model(**model_setup)
Example #2
0
def create_train_model(hyper, **kwargs):
    model_setup = model_setup_params(hyper)
    model_setup.update(kwargs)
    return Model(**model_setup)