def create_train_model(hyper, **kwargs): model_setup = dict( g=tf.Graph(), # per_process_gpu_memory_fraction=0.6, # n_samples_per_ref=3, block_size_x=8 * 3 * 50 // 2, block_size_y=80, num_blocks=1, batch_size=32, max_reach=8 * 20, # 160 queue_cap=300, overwrite=False, reuse=False, shrink_factor=8, dtype=tf.float32, model_fn=model_fn, in_data=input_readers.MinCallAlignedRaw(), lr_fn=lambda global_step: tf.train.exponential_decay( hyper['initial_lr'], global_step, 100000, hyper['decay_factor']), hyper=hyper, ) model_setup.update(kwargs) return Model(**model_setup)
def create_train_model(hyper, **kwargs): model_setup = model_setup_params(hyper) model_setup.update(kwargs) return Model(**model_setup)