Example #1
0
def launch_mimic_training():
    experiment_uids_path = Path(
        __file__).parent.parent / 'data/thesis/experiment_uids.json'
    dataset = 'mimic'
    if experiment_uids_path.exists():
        exp_uids = json2dict(experiment_uids_path)
    else:
        experiment_uids_path.parent.mkdir(exist_ok=True, parents=True)
        exp_uids = {dataset: {}}

    for params in [mopoe_mimic_args, mofop_mimic_args, mopgfm_mimic_args]:
        method = params['method']

        if method not in exp_uids[dataset]:
            exp_uids[dataset][method] = {}

        num_mods = 3
        exp_uids[dataset][method][f'{num_mods}_mods'] = []

        experiment_uid = get_experiment_uid('mimic', method=method)
        params["experiment_uid"] = experiment_uid

        exp_uids[dataset][method][f'{num_mods}_mods'].append(experiment_uid)

        launch_leomed_jobs(which_dataset='mimic', params=params)

    dict2json(experiment_uids_path, d=exp_uids)
Example #2
0
def launch_polymnist_training():
    experiment_uids_path = Path(
        __file__).parent.parent / 'data/thesis/experiment_uids.json'
    dataset = 'polymnist'
    if experiment_uids_path.exists():
        exp_uids = json2dict(experiment_uids_path)
    else:
        experiment_uids_path.parent.mkdir(exist_ok=True, parents=True)
        exp_uids = {dataset: {}}

    for params in [
            mopoe_args, poe_args, moe_args, mopgfm_args, mofop_args,
            iwmogfm2_args, mogfm_amortized_args
    ]:
        # for params in [mofop_args]:
        method = params['method']

        if method not in exp_uids[dataset]:
            exp_uids[dataset][method] = {}

        for num_mods in range(1, 5):
            params['num_mods'] = num_mods
            # more evaluation steps are needed for 3 mods
            if num_mods == 3:
                params['eval_freq'] = 100
            exp_uids[dataset][method][f'{num_mods}_mods'] = []

            for _ in range(nbr_repeats):
                experiment_uid = get_experiment_uid('polymnist', method=method)
                params["experiment_uid"] = experiment_uid

                exp_uids[dataset][method][f'{num_mods}_mods'].append(
                    experiment_uid)

                launch_leomed_jobs(which_dataset='polymnist', params=params)

    dict2json(experiment_uids_path, d=exp_uids)
Example #3
0
# -*- coding: utf-8 -*-
# from mmvae_hub.hyperopt.search_spaces.base_search_spaces import base_search_spaces
from sklearn.model_selection import ParameterGrid

from mmvae_hub.hyperopt.search_spaces.search_spaces import *
from mmvae_hub.leomed_utils.launch_jobs import launch_leomed_jobs

for search_space in [sp_mofop_mnistsvhntext]:
    # for search_space in [search_space_je, search_space_gfm, search_space_mofop]:

    for params in ParameterGrid(search_space):
        params["eval_freq"] = 50
        launch_leomed_jobs(which_dataset='mnistsvhntext', params=params)
Example #4
0
# -*- coding: utf-8 -*-

from sklearn.model_selection import ParameterGrid

from mmvae_hub.hyperopt.search_spaces.base_search_spaces import *
from mmvae_hub.hyperopt.search_spaces.search_spaces import *
from mmvae_hub.leomed_utils.launch_jobs import launch_leomed_jobs

# for search_space in [flow_mimic]:
# for search_space in [iwmopgfm_mimic]:
for search_space in [sp_mopoe_mimic, iwmogfm_mimic, amortized_mimic]:
    # for search_space in [search_space_je, search_space_gfm, search_space_mofop]:

    for params in ParameterGrid(search_space):
        # params['gpu_mem'] = 15000
        params["eval_freq"] = 150
        launch_leomed_jobs(which_dataset='mimic', params=params)
Example #5
0
# -*- coding: utf-8 -*-
from sklearn.model_selection import ParameterGrid

from mmvae_hub.hyperopt.search_spaces.search_spaces import *
from mmvae_hub.leomed_utils.launch_jobs import launch_leomed_jobs

# for search_space in [iwmogfm2]:
# for search_space in [sp_mofop]:
# for search_space in [mopgfm_celeba, mopoe_celeba]:
for search_space in [mopoe_celeba]:
    # for search_space in [search_space_je, search_space_gfm, search_space_mofop]:

    for params in ParameterGrid(search_space):
        params["eval_freq"] = 50
        launch_leomed_jobs(which_dataset='celeba', params=params)
Example #6
0
# -*- coding: utf-8 -*-
# from mmvae_hub.hyperopt.search_spaces.base_search_spaces import base_search_spaces
from sklearn.model_selection import ParameterGrid

from mmvae_hub.hyperopt.search_spaces.search_spaces import *
from mmvae_hub.leomed_utils.launch_jobs import launch_leomed_jobs

# for search_space in [sp_iwmopgfm, iwmopoe]:
for search_space in [iwmopoe]:
    # for search_space in [sp_mofop]:
    # for search_space in [sp_joint_elbo_article]:
    # for search_space in [search_space_je, search_space_gfm, search_space_mofop]:

    for params in ParameterGrid(search_space):
        # params["eval_freq"] = 10
        launch_leomed_jobs(which_dataset='polymnist', params=params)