def launch_mimic_training(): experiment_uids_path = Path( __file__).parent.parent / 'data/thesis/experiment_uids.json' dataset = 'mimic' if experiment_uids_path.exists(): exp_uids = json2dict(experiment_uids_path) else: experiment_uids_path.parent.mkdir(exist_ok=True, parents=True) exp_uids = {dataset: {}} for params in [mopoe_mimic_args, mofop_mimic_args, mopgfm_mimic_args]: method = params['method'] if method not in exp_uids[dataset]: exp_uids[dataset][method] = {} num_mods = 3 exp_uids[dataset][method][f'{num_mods}_mods'] = [] experiment_uid = get_experiment_uid('mimic', method=method) params["experiment_uid"] = experiment_uid exp_uids[dataset][method][f'{num_mods}_mods'].append(experiment_uid) launch_leomed_jobs(which_dataset='mimic', params=params) dict2json(experiment_uids_path, d=exp_uids)
def launch_polymnist_training(): experiment_uids_path = Path( __file__).parent.parent / 'data/thesis/experiment_uids.json' dataset = 'polymnist' if experiment_uids_path.exists(): exp_uids = json2dict(experiment_uids_path) else: experiment_uids_path.parent.mkdir(exist_ok=True, parents=True) exp_uids = {dataset: {}} for params in [ mopoe_args, poe_args, moe_args, mopgfm_args, mofop_args, iwmogfm2_args, mogfm_amortized_args ]: # for params in [mofop_args]: method = params['method'] if method not in exp_uids[dataset]: exp_uids[dataset][method] = {} for num_mods in range(1, 5): params['num_mods'] = num_mods # more evaluation steps are needed for 3 mods if num_mods == 3: params['eval_freq'] = 100 exp_uids[dataset][method][f'{num_mods}_mods'] = [] for _ in range(nbr_repeats): experiment_uid = get_experiment_uid('polymnist', method=method) params["experiment_uid"] = experiment_uid exp_uids[dataset][method][f'{num_mods}_mods'].append( experiment_uid) launch_leomed_jobs(which_dataset='polymnist', params=params) dict2json(experiment_uids_path, d=exp_uids)
# -*- coding: utf-8 -*- # from mmvae_hub.hyperopt.search_spaces.base_search_spaces import base_search_spaces from sklearn.model_selection import ParameterGrid from mmvae_hub.hyperopt.search_spaces.search_spaces import * from mmvae_hub.leomed_utils.launch_jobs import launch_leomed_jobs for search_space in [sp_mofop_mnistsvhntext]: # for search_space in [search_space_je, search_space_gfm, search_space_mofop]: for params in ParameterGrid(search_space): params["eval_freq"] = 50 launch_leomed_jobs(which_dataset='mnistsvhntext', params=params)
# -*- coding: utf-8 -*- from sklearn.model_selection import ParameterGrid from mmvae_hub.hyperopt.search_spaces.base_search_spaces import * from mmvae_hub.hyperopt.search_spaces.search_spaces import * from mmvae_hub.leomed_utils.launch_jobs import launch_leomed_jobs # for search_space in [flow_mimic]: # for search_space in [iwmopgfm_mimic]: for search_space in [sp_mopoe_mimic, iwmogfm_mimic, amortized_mimic]: # for search_space in [search_space_je, search_space_gfm, search_space_mofop]: for params in ParameterGrid(search_space): # params['gpu_mem'] = 15000 params["eval_freq"] = 150 launch_leomed_jobs(which_dataset='mimic', params=params)
# -*- coding: utf-8 -*- from sklearn.model_selection import ParameterGrid from mmvae_hub.hyperopt.search_spaces.search_spaces import * from mmvae_hub.leomed_utils.launch_jobs import launch_leomed_jobs # for search_space in [iwmogfm2]: # for search_space in [sp_mofop]: # for search_space in [mopgfm_celeba, mopoe_celeba]: for search_space in [mopoe_celeba]: # for search_space in [search_space_je, search_space_gfm, search_space_mofop]: for params in ParameterGrid(search_space): params["eval_freq"] = 50 launch_leomed_jobs(which_dataset='celeba', params=params)
# -*- coding: utf-8 -*- # from mmvae_hub.hyperopt.search_spaces.base_search_spaces import base_search_spaces from sklearn.model_selection import ParameterGrid from mmvae_hub.hyperopt.search_spaces.search_spaces import * from mmvae_hub.leomed_utils.launch_jobs import launch_leomed_jobs # for search_space in [sp_iwmopgfm, iwmopoe]: for search_space in [iwmopoe]: # for search_space in [sp_mofop]: # for search_space in [sp_joint_elbo_article]: # for search_space in [search_space_je, search_space_gfm, search_space_mofop]: for params in ParameterGrid(search_space): # params["eval_freq"] = 10 launch_leomed_jobs(which_dataset='polymnist', params=params)