Example #1
0
def create_model(input_shape,
                 anchors,
                 num_classes,
                 weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session()  # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors // 3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(
        num_anchors, num_classes))

    model_loss = Lambda(yolo_loss,
                        output_shape=(1, ),
                        name='yolo_loss',
                        arguments={
                            'anchors': anchors,
                            'num_classes': num_classes,
                            'ignore_thresh': 0.5
                        })([*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model
Example #2
0
    def generate(self):
        num_anchors = len(self.anchors)
        num_classes = len(self.classes_names)
        print("num_anchors", num_anchors)
        print("num_classes", num_classes)
        print("anchors", self.anchors)
        # print("classes",self.classes)
        self.yolo_model = yolo_body(Input(shape=(None, None, 3)),
                                    num_anchors // 3, num_classes)
        self.yolo_model.summary()
        self.yolo_model.load_weights(self.model_path)
        # self.yolo_model=load_model(self.model_path,compile=False)
        print("model loaded...")

        "生成边框颜色"
        hsv_tuples = [(x / len(self.classes_names), 1., 1.)
                      for x in range(len(self.classes_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)
        np.random.shuffle(self.colors)
        np.random.seed(None)

        self.input_image_shape = K.placeholder(shape=(2, ))
        print(self.yolo_model.output[0].shape, self.yolo_model.output[1].shape,
              self.yolo_model.output[2].shape)
        boxes, score, classes = yolo_eval(self.yolo_model.output,
                                          self.anchors,
                                          num_classes,
                                          self.input_image_shape,
                                          score_threshold=self.score,
                                          iou_threshold=self.iou)
        return boxes, score, classes
Example #3
0
 def load_model(self):
     """
     加载模型
     :return:
     """
     model = yolo_body()
     print("loading weights...")
     model.load_weights(self.model_path)
     self.model = model
Example #4
0
def high_level_train(optimizer, loss, train_datasets, valid_datasets, train_steps, valid_steps):
    """
    使用fit方式训练,可以知道训练完的时间,以及更规范的添加callbacks参数
    :param optimizer: 优化器
    :param loss: 自定义的loss function
    :param train_datasets: 以tf.data封装好的训练集数据
    :param valid_datasets: 验证集数据
    :param train_steps: 迭代一个epoch的轮次
    :param valid_steps: 同上
    :return: None
    """
    callbacks = [
        ReduceLROnPlateau(verbose=1),
        EarlyStopping(patience=10, verbose=1),
        TensorBoard(log_dir=cfg.log_dir),
        ModelCheckpoint(cfg.best_model, save_best_only=True, save_weights_only=True)
    ]

    strategy = tf.distribute.MirroredStrategy()
    with strategy.scope():
        model = yolo_body()
        model.compile(optimizer=optimizer, loss=loss)

    # initial_epoch用于恢复之前的训练
    model.fit(train_datasets,
              steps_per_epoch=max(1, train_steps),
              validation_data=valid_datasets,
              validation_steps=max(1, valid_steps),
              epochs=cfg.epochs,
              initial_epoch=0,
              callbacks=callbacks)
    print("save weights")
    model.save_weights(cfg.model_path)

    if cfg.fine_tune:
        with strategy.scope():
            print("Unfreeze all of the layers.")
            for i in range(len(model.layers)):
                model.layers[i].trainable = True

            model.compile(optimizer=Adam(learning_rate=cfg.learn_rating / 10), loss=loss)

        model.fit(train_datasets,
                  steps_per_epoch=max(1, train_steps),
                  validation_data=valid_datasets,
                  validation_steps=max(1, valid_steps),
                  epochs=cfg.epochs*2,
                  initial_epoch=cfg.epochs + 1,
                  callbacks=callbacks)

        print("save weights")
        model.save_weights(cfg.model_path)
Example #5
0
    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith(
            '.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors == 6  # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
            #self.yolo_model.load_weights('/content/drive/My Drive/ep020-loss18.266-val_loss18.436.h5')
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
            self.yolo_model.load_weights(
                self.model_path)  # make sure model, anchors and classes match
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(
            self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num >= 2:
            self.yolo_model = multi_gpu_model(self.yolo_model,
                                              gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output,
                                           self.anchors,
                                           len(self.class_names),
                                           self.input_image_shape,
                                           score_threshold=self.score,
                                           iou_threshold=self.iou)
        return boxes, scores, classes
Example #6
0
def create_model(input_shape,
                 anchors,
                 num_classes,
                 load_pretrained=True,
                 freeze_body=2,
                 weights_path="../data/yolo_weights1.h5"):
    K.clear_session()
    image_imput = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)
    y_true = [
        Input(shape=(h // {
            0: 32,
            1: 16,
            2: 8
        }[l], w // {
            0: 32,
            1: 16,
            2: 8
        }[l], num_anchors // 3, num_classes + 5)) for l in range(3)
    ]
    model_body = yolo_body(image_imput, num_anchors // 3, num_classes)
    print("Created YOLOV3 model")
    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print("load weight...")
        if freeze_body in [1, 2]:
            num = (185, len(model_body.layers) - 3)[freeze_body - 1]
            for i in range(num):
                model_body.layers[i].trainable = False
            print("free model layer")
    model_loss = Lambda(yolo_loss,
                        output_shape=(1, ),
                        name="yolo_loss",
                        arguments={
                            "anchors": anchors,
                            "num_classes": num_classes,
                            "ignore_thresh": 0.5
                        })([*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    return model
Example #7
0
def create_model(input_shape,
                 anchors,
                 num_classes,
                 load_pretrained=True,
                 freeze_body=2,
                 weights_path=DARKNET_WEIGHT_PATH):
    '''create the training model'''
    K.clear_session()  # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors // 3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(
        num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers) - 3)[freeze_body - 1]
            for i in range(num):
                model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(
                num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss,
                        output_shape=(1, ),
                        name='yolo_loss',
                        arguments={
                            'anchors': anchors,
                            'num_classes': num_classes,
                            'ignore_thresh': 0.5
                        })([*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model
Example #8
0
def low_level_train(optimizer, yolo_loss, train_datasets, valid_datasets, train_steps, valid_steps):
    """
    以底层的方式训练,这种方式更好地观察训练过程,监视变量的变化
    :param optimizer: 优化器
    :param yolo_loss: 自定义的loss function
    :param train_datasets: 以tf.data封装好的训练集数据
    :param valid_datasets: 验证集数据
    :param train_steps: 迭代一个epoch的轮次
    :param valid_steps: 同上
    :return: None
    """
    # 创建模型结构
    model = yolo_body()

    # 定义模型评估指标
    train_loss = Mean(name='train_loss')
    valid_loss = Mean(name='valid_loss')

    # 设置保存最好模型的指标
    best_test_loss = float('inf')
    patience = 10
    min_delta = 1e-3
    patience_cnt = 0
    history_loss = []

    # 创建summary
    summary_writer = tf.summary.create_file_writer(logdir=cfg.log_dir)

    # low level的方式计算loss
    for epoch in range(1, cfg.epochs + 1):
        train_loss.reset_states()
        valid_loss.reset_states()
        step = 0
        print("Epoch {}/{}".format(epoch, cfg.epochs))

        # 处理训练集数据
        for batch, (images, labels) in enumerate(train_datasets.take(train_steps)):
            with tf.GradientTape() as tape:
                # 得到预测
                outputs = model(images, training=True)
                # 计算损失(注意这里收集model.losses的前提是Conv2D的kernel_regularizer参数)
                regularization_loss = tf.reduce_sum(model.losses)
                pred_loss = []
                # yolo_loss、label、output都是3个特征层的数据,通过for 拆包之后,一个loss_fn就是yolo_loss中一个特征层
                # 然后逐一计算,
                for output, label, loss_fn in zip(outputs, labels, yolo_loss):
                    pred_loss.append(loss_fn(label, output))

                # 总损失 = yolo损失 + 正则化损失
                total_train_loss = tf.reduce_sum(pred_loss) + regularization_loss

            # 反向传播梯度下降
            # model.trainable_variables代表把loss反向传播到每个可以训练的变量中
            grads = tape.gradient(total_train_loss, model.trainable_variables)
            # 将每个节点的误差梯度gradients,用于更新该节点的可训练变量值
            # zip是把梯度和可训练变量值打包成元组
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            # 更新train_loss
            train_loss.update_state(total_train_loss)
            # 输出训练过程
            rate = (step + 1) / train_steps
            a = "*" * int(rate * 70)
            b = "." * int((1 - rate) * 70)
            loss = train_loss.result().numpy()

            print("\r{}/{} {:^3.0f}%[{}->{}] - loss:{:.4f}".
                  format(batch, train_steps, int(rate * 100), a, b, loss), end='')
            step += 1

        # 计算验证集
        for batch, (images, labels) in enumerate(valid_datasets.take(valid_steps)):
            # 得到预测,不training
            outputs = model(images)
            regularization_loss = tf.reduce_sum(model.losses)
            pred_loss = []
            for output, label, loss_fn in zip(outputs, labels, yolo_loss):
                pred_loss.append(loss_fn(label, output))

            total_valid_loss = tf.reduce_sum(pred_loss) + regularization_loss

            # 更新valid_loss
            valid_loss.update_state(total_valid_loss)

        print('\nLoss: {:.4f}, Test Loss: {:.4f}\n'.format(train_loss.result(), valid_loss.result()))
        # 保存loss,可以选择train的loss
        history_loss.append(valid_loss.result().numpy())

        # 保存到tensorboard里
        with summary_writer.as_default():
            tf.summary.scalar('train_loss', train_loss.result(), step=optimizer.iterations)
            tf.summary.scalar('valid_loss', valid_loss.result(), step=optimizer.iterations)

        # 只保存最好模型
        if valid_loss.result() < best_test_loss:
            best_test_loss = valid_loss.result()
            model.save_weights(cfg.model_path, save_format='tf')

        # EarlyStopping
        if epoch > 1 and history_loss[epoch - 2] - history_loss[epoch - 1] > min_delta:
            patience_cnt = 0
        else:
            patience_cnt += 1

        if patience_cnt >= patience:
            tf.print("No improvement for {} times, early stopping optimization.".format(patience))
            break
Example #9
0
        class_loss = tf.reduce_sum(class_loss) / tf.cast(
            batch_size, tf.float32)

        if summary_writer:
            # 保存到tensorboard里
            with summary_writer.as_default():
                tf.summary.scalar('xy_loss',
                                  xy_loss,
                                  step=optimizer.iterations)
                tf.summary.scalar('wh_loss',
                                  wh_loss,
                                  step=optimizer.iterations)
                tf.summary.scalar('confidence_loss',
                                  confidence_loss,
                                  step=optimizer.iterations)
                tf.summary.scalar('class_loss',
                                  class_loss,
                                  step=optimizer.iterations)

        return xy_loss + wh_loss + confidence_loss + class_loss

    return compute_loss


if __name__ == '__main__':
    import numpy as np

    inputs = tf.keras.layers.Input(shape=(416, 416, 3), dtype="float32")

    model = yolo_body()