def create_model(input_shape, anchors, num_classes, weights_path='model_data/yolo_weights.h5'): '''create the training model''' K.clear_session() # get a new session image_input = Input(shape=(None, None, 3)) h, w = input_shape num_anchors = len(anchors) y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \ num_anchors//3, num_classes+5)) for l in range(3)] model_body = yolo_body(image_input, num_anchors // 3, num_classes) print('Create YOLOv3 model with {} anchors and {} classes.'.format( num_anchors, num_classes)) model_loss = Lambda(yolo_loss, output_shape=(1, ), name='yolo_loss', arguments={ 'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5 })([*model_body.output, *y_true]) model = Model([model_body.input, *y_true], model_loss) return model
def generate(self): num_anchors = len(self.anchors) num_classes = len(self.classes_names) print("num_anchors", num_anchors) print("num_classes", num_classes) print("anchors", self.anchors) # print("classes",self.classes) self.yolo_model = yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes) self.yolo_model.summary() self.yolo_model.load_weights(self.model_path) # self.yolo_model=load_model(self.model_path,compile=False) print("model loaded...") "生成边框颜色" hsv_tuples = [(x / len(self.classes_names), 1., 1.) for x in range(len(self.classes_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) np.random.seed(10101) np.random.shuffle(self.colors) np.random.seed(None) self.input_image_shape = K.placeholder(shape=(2, )) print(self.yolo_model.output[0].shape, self.yolo_model.output[1].shape, self.yolo_model.output[2].shape) boxes, score, classes = yolo_eval(self.yolo_model.output, self.anchors, num_classes, self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, score, classes
def load_model(self): """ 加载模型 :return: """ model = yolo_body() print("loading weights...") model.load_weights(self.model_path) self.model = model
def high_level_train(optimizer, loss, train_datasets, valid_datasets, train_steps, valid_steps): """ 使用fit方式训练,可以知道训练完的时间,以及更规范的添加callbacks参数 :param optimizer: 优化器 :param loss: 自定义的loss function :param train_datasets: 以tf.data封装好的训练集数据 :param valid_datasets: 验证集数据 :param train_steps: 迭代一个epoch的轮次 :param valid_steps: 同上 :return: None """ callbacks = [ ReduceLROnPlateau(verbose=1), EarlyStopping(patience=10, verbose=1), TensorBoard(log_dir=cfg.log_dir), ModelCheckpoint(cfg.best_model, save_best_only=True, save_weights_only=True) ] strategy = tf.distribute.MirroredStrategy() with strategy.scope(): model = yolo_body() model.compile(optimizer=optimizer, loss=loss) # initial_epoch用于恢复之前的训练 model.fit(train_datasets, steps_per_epoch=max(1, train_steps), validation_data=valid_datasets, validation_steps=max(1, valid_steps), epochs=cfg.epochs, initial_epoch=0, callbacks=callbacks) print("save weights") model.save_weights(cfg.model_path) if cfg.fine_tune: with strategy.scope(): print("Unfreeze all of the layers.") for i in range(len(model.layers)): model.layers[i].trainable = True model.compile(optimizer=Adam(learning_rate=cfg.learn_rating / 10), loss=loss) model.fit(train_datasets, steps_per_epoch=max(1, train_steps), validation_data=valid_datasets, validation_steps=max(1, valid_steps), epochs=cfg.epochs*2, initial_epoch=cfg.epochs + 1, callbacks=callbacks) print("save weights") model.save_weights(cfg.model_path)
def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith( '.h5'), 'Keras model or weights must be a .h5 file.' # Load model, or construct model and load weights. num_anchors = len(self.anchors) num_classes = len(self.class_names) is_tiny_version = num_anchors == 6 # default setting try: self.yolo_model = load_model(model_path, compile=False) #self.yolo_model.load_weights('/content/drive/My Drive/ep020-loss18.266-val_loss18.436.h5') except: self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \ if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes) self.yolo_model.load_weights( self.model_path) # make sure model, anchors and classes match else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors/len(self.yolo_model.output) * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # Generate colors for drawing bounding boxes. hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) np.random.seed(10101) # Fixed seed for consistent colors across runs. np.random.shuffle( self.colors) # Shuffle colors to decorrelate adjacent classes. np.random.seed(None) # Reset seed to default. # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2, )) if self.gpu_num >= 2: self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2, weights_path="../data/yolo_weights1.h5"): K.clear_session() image_imput = Input(shape=(None, None, 3)) h, w = input_shape num_anchors = len(anchors) y_true = [ Input(shape=(h // { 0: 32, 1: 16, 2: 8 }[l], w // { 0: 32, 1: 16, 2: 8 }[l], num_anchors // 3, num_classes + 5)) for l in range(3) ] model_body = yolo_body(image_imput, num_anchors // 3, num_classes) print("Created YOLOV3 model") if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print("load weight...") if freeze_body in [1, 2]: num = (185, len(model_body.layers) - 3)[freeze_body - 1] for i in range(num): model_body.layers[i].trainable = False print("free model layer") model_loss = Lambda(yolo_loss, output_shape=(1, ), name="yolo_loss", arguments={ "anchors": anchors, "num_classes": num_classes, "ignore_thresh": 0.5 })([*model_body.output, *y_true]) model = Model([model_body.input, *y_true], model_loss) return model
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2, weights_path=DARKNET_WEIGHT_PATH): '''create the training model''' K.clear_session() # get a new session image_input = Input(shape=(None, None, 3)) h, w = input_shape num_anchors = len(anchors) y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \ num_anchors//3, num_classes+5)) for l in range(3)] model_body = yolo_body(image_input, num_anchors // 3, num_classes) print('Create YOLOv3 model with {} anchors and {} classes.'.format( num_anchors, num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) if freeze_body in [1, 2]: # Freeze darknet53 body or freeze all but 3 output layers. num = (185, len(model_body.layers) - 3)[freeze_body - 1] for i in range(num): model_body.layers[i].trainable = False print('Freeze the first {} layers of total {} layers.'.format( num, len(model_body.layers))) model_loss = Lambda(yolo_loss, output_shape=(1, ), name='yolo_loss', arguments={ 'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5 })([*model_body.output, *y_true]) model = Model([model_body.input, *y_true], model_loss) return model
def low_level_train(optimizer, yolo_loss, train_datasets, valid_datasets, train_steps, valid_steps): """ 以底层的方式训练,这种方式更好地观察训练过程,监视变量的变化 :param optimizer: 优化器 :param yolo_loss: 自定义的loss function :param train_datasets: 以tf.data封装好的训练集数据 :param valid_datasets: 验证集数据 :param train_steps: 迭代一个epoch的轮次 :param valid_steps: 同上 :return: None """ # 创建模型结构 model = yolo_body() # 定义模型评估指标 train_loss = Mean(name='train_loss') valid_loss = Mean(name='valid_loss') # 设置保存最好模型的指标 best_test_loss = float('inf') patience = 10 min_delta = 1e-3 patience_cnt = 0 history_loss = [] # 创建summary summary_writer = tf.summary.create_file_writer(logdir=cfg.log_dir) # low level的方式计算loss for epoch in range(1, cfg.epochs + 1): train_loss.reset_states() valid_loss.reset_states() step = 0 print("Epoch {}/{}".format(epoch, cfg.epochs)) # 处理训练集数据 for batch, (images, labels) in enumerate(train_datasets.take(train_steps)): with tf.GradientTape() as tape: # 得到预测 outputs = model(images, training=True) # 计算损失(注意这里收集model.losses的前提是Conv2D的kernel_regularizer参数) regularization_loss = tf.reduce_sum(model.losses) pred_loss = [] # yolo_loss、label、output都是3个特征层的数据,通过for 拆包之后,一个loss_fn就是yolo_loss中一个特征层 # 然后逐一计算, for output, label, loss_fn in zip(outputs, labels, yolo_loss): pred_loss.append(loss_fn(label, output)) # 总损失 = yolo损失 + 正则化损失 total_train_loss = tf.reduce_sum(pred_loss) + regularization_loss # 反向传播梯度下降 # model.trainable_variables代表把loss反向传播到每个可以训练的变量中 grads = tape.gradient(total_train_loss, model.trainable_variables) # 将每个节点的误差梯度gradients,用于更新该节点的可训练变量值 # zip是把梯度和可训练变量值打包成元组 optimizer.apply_gradients(zip(grads, model.trainable_variables)) # 更新train_loss train_loss.update_state(total_train_loss) # 输出训练过程 rate = (step + 1) / train_steps a = "*" * int(rate * 70) b = "." * int((1 - rate) * 70) loss = train_loss.result().numpy() print("\r{}/{} {:^3.0f}%[{}->{}] - loss:{:.4f}". format(batch, train_steps, int(rate * 100), a, b, loss), end='') step += 1 # 计算验证集 for batch, (images, labels) in enumerate(valid_datasets.take(valid_steps)): # 得到预测,不training outputs = model(images) regularization_loss = tf.reduce_sum(model.losses) pred_loss = [] for output, label, loss_fn in zip(outputs, labels, yolo_loss): pred_loss.append(loss_fn(label, output)) total_valid_loss = tf.reduce_sum(pred_loss) + regularization_loss # 更新valid_loss valid_loss.update_state(total_valid_loss) print('\nLoss: {:.4f}, Test Loss: {:.4f}\n'.format(train_loss.result(), valid_loss.result())) # 保存loss,可以选择train的loss history_loss.append(valid_loss.result().numpy()) # 保存到tensorboard里 with summary_writer.as_default(): tf.summary.scalar('train_loss', train_loss.result(), step=optimizer.iterations) tf.summary.scalar('valid_loss', valid_loss.result(), step=optimizer.iterations) # 只保存最好模型 if valid_loss.result() < best_test_loss: best_test_loss = valid_loss.result() model.save_weights(cfg.model_path, save_format='tf') # EarlyStopping if epoch > 1 and history_loss[epoch - 2] - history_loss[epoch - 1] > min_delta: patience_cnt = 0 else: patience_cnt += 1 if patience_cnt >= patience: tf.print("No improvement for {} times, early stopping optimization.".format(patience)) break
class_loss = tf.reduce_sum(class_loss) / tf.cast( batch_size, tf.float32) if summary_writer: # 保存到tensorboard里 with summary_writer.as_default(): tf.summary.scalar('xy_loss', xy_loss, step=optimizer.iterations) tf.summary.scalar('wh_loss', wh_loss, step=optimizer.iterations) tf.summary.scalar('confidence_loss', confidence_loss, step=optimizer.iterations) tf.summary.scalar('class_loss', class_loss, step=optimizer.iterations) return xy_loss + wh_loss + confidence_loss + class_loss return compute_loss if __name__ == '__main__': import numpy as np inputs = tf.keras.layers.Input(shape=(416, 416, 3), dtype="float32") model = yolo_body()