def getCaption(self, imgs, output_path='', vocab_path='data/vocab.pkl', decoder_path='models/decoder-5-3000.pkl', encoder_path='models/encoder-5-3000.pkl', embed_size=256, hidden_size=512, num_layers=1): if (output_path == ''): output_path = self.DEFAULT_OUTPUT_PATH device = self.device transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # Load vocabulary wrapper with open(vocab_path, 'rb') as f: vocab = pickle.load(f) # Build models encoder = EncoderCNN(embed_size).eval( ) # eval mode (batchnorm uses moving mean/variance) decoder = DecoderRNN(embed_size, hidden_size, len(vocab), num_layers) encoder = encoder.to(device) decoder = decoder.to(device) # Load the trained model parameters encoder.load_state_dict(torch.load(encoder_path)) decoder.load_state_dict(torch.load(decoder_path)) CAPTIONS = [] for img in imgs: # Prepare an image image = self.load_image(img, transform=transform) image_tensor = image.to(device) # Generate an caption from the image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy( ) # (1, max_seq_length) -> (max_seq_length) # Convert word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) # Print out the image and the generated caption CAPTIONS.append(self.prune_caption(sentence)) json_captions = self.writeJSON(imgs, CAPTIONS, output_path=output_path) return json_captions
def main(args): # Image preprocessing, normalization for the pretrained resnet transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build models encoder = EncoderCNN(args.embed_size).eval() # eval mode (batchnorm uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) encoder = encoder.to(device) decoder = decoder.to(device) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Build data loader data_loader = get_loader(args.image_dir, args.caption_path, vocab, transform, args.batch_size, shuffle=True, num_workers=args.num_workers) total_step = len(data_loader) # List to score the BLEU scores bleu_scores = [] for i, (images, captions, lengths) in enumerate(data_loader): # Set mini-batch dataset images = images.to(device) # captions = captions.to(device) # Generate an caption from the image feature = encoder(images) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy() # Convert word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) score = sentence_bleu(captions, sentence, args.bleu_weights) bleu_scores.append(score) # Print log info if i % args.log_step == 0: print('Finish [{}/{}], Current BLEU Score: {:.4f}' .format(i, total_step, np.mean(bleu_scores))) np.save('test_results.npy', [bleu_scores, np.mean(bleu_scores)])
def test(args): transform = transforms.Compose([ transforms.ToTensor(), ]) with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) encoder = EncoderCNN(args.embed_size).eval() decoder = DecoderRNN(args.embed_size, len(vocab), args.hidden_size, args.num_layers) # 加载训练好的模型的参数 encoder.load_state_dict(torch.load(args.encoder_path, map_location='cpu')) decoder.load_state_dict(torch.load(args.decoder_path, map_location='cpu')) image = load_img(args.img_path, transform) feature = encoder(image) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy() sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) print(sentence) image = Image.open(args.img_path) plt.imshow(np.asarray(image)) plt.show()
def main(args): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build Models # encoder = EncoderCNN(args.embed_size) # encoder.eval() # evaluation mode (BN uses moving mean/variance) layout_encoder = LayoutEncoder(args.layout_embed_size, args.embed_size, 100, args.num_layers) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) # Load the trained model parameters layout_encoder.load_state_dict(torch.load(args.layout_encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # If use gpu if torch.cuda.is_available(): layout_encoder.cuda() decoder.cuda() # validation(layout_encoder,decoder, args,vocab,transform,args.batch_size) out = save_output(layout_encoder,decoder, args,vocab,transform,args.batch_size) with open('bsl_output.txt', 'w') as outfile: json.dump(out, outfile)
def main(args): with open('data/vocab.pkl', 'rb') as f: vocab = pickle.load(f) encoder = EncoderCNN(256) encoder.eval() # evaluation mode (BN uses moving mean/variance) decoder = DecoderRNN(256, 512, len(vocab), 1) if torch.cuda.is_available(): encoder.cuda() decoder.cuda() # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder)) decoder.load_state_dict(torch.load(args.decoder)) measurement_score = test(encoder, decoder, vocab, args.num_samples, args.num_hints, args.debug, args.c_step, args.no_avg) if args.msm == "co": scores = cocoEval() scores_u = cocoEval(res='data/captions_val2014_results_u.json') print(scores) print(scores_u) with open(args.filepath, 'w+') as f: pickle.dump((scores, scores_u), f)
def main(args): vectore_dir = '/root/server/best_model/' # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build Models # encoder = EncoderCNN(args.embed_size) qvecs_pca = np.load( os.path.join(vectore_dir, "q_2{}.npy".format(args.embed_size))) # encoder.eval() # evaluation mode (BN uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) # Load the trained model parameters # encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Prepare Image #image = load_image(args.image, transform) #image_tensor = to_var(image, volatile=True) # If use gpu if torch.cuda.is_available(): # encoder.cuda() decoder.cuda() data = [] # img_path = args.image # # Prepare Image # image = load_image(img_path, transform) # image_tensor = to_var(image, volatile=True) # Generate caption from image # feature = encoder(image_tensor) num = 29 feature = torch.from_numpy(qvecs_pca[num:num + 1, :]).cuda() #pdb.set_trace() sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids.cpu().data.numpy() # Decode word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] if word == '<start>': continue if word == '<end>': break sampled_caption.append(word) sentence = ' '.join(sampled_caption) # Print out image and generated caption. print(sentence)
def main(args): # Val images folder filepath = '/scratch/ys2542/pytorch-tutorial/tutorials/03-advanced/image_captioning/data/resizedval2014' onlyfiles = [fl for fl in listdir(filepath) if isfile(join(filepath, fl))] # image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # load vocabulary wrapper pickle file with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) encoder = EncoderCNN(args.embed_size) # build encoder encoder.eval() # evaluation mode by moving mean and variance decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) # build decoder # load the trained CNN and RNN parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Load all images in val folder for i in onlyfiles: badsize = 0 # count the unload images args_image = filepath + '/' # val folder path with image names args_image = args_image + i # transform image and wrap it to tensor image = load_image(args_image, transform) image_tensor = to_var(image, volatile=True) if torch.cuda.is_available(): # load GPU encoder.cuda() decoder.cuda() # generate caption from image try: feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids.cpu().data.numpy() # decode word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) # print out image and generated caption without start and end print('beam_size_1' + '\t' + i + '\t' + sentence[8:-8]) except: badsize = badsize + 1 # count some wrong images
def run_inference(image_path, encoder_path, decoder_path, vocab_path, embed_size=256, hidden_size=512, num_layers=1): print(f'sample.py running ... ') # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # Load vocabulary wrapper with open(vocab_path, 'rb') as f: print("using " + vocab_path) vocab = pickle.load(f) # Build models encoder = EncoderCNN( embed_size).eval() # eval mode (batchnorm uses moving mean/variance) decoder = DecoderRNN(embed_size, hidden_size, len(vocab), num_layers) encoder = encoder.to(device) decoder = decoder.to(device) # Load the trained model parameters encoder.load_state_dict( torch.load(encoder_path, map_location=torch.device('cpu'))) decoder.load_state_dict( torch.load(decoder_path, map_location=torch.device('cpu'))) # Prepare an image image = load_image(image_path, transform) image_tensor = image.to(device) # Generate an caption from the image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy( ) # (1, max_seq_length) -> (max_seq_length) # Convert word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] print(word) sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption).replace('<start>', '') sentence = sentence.replace('<end>', '') sentence = sentence.replace('_', ' ') # Print out the image and the generated caption print(sentence) print(f'debug: chay xong roi ne') return sentence.strip().capitalize()
def main(args): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.033, 0.032, 0.033), (0.027, 0.027, 0.027))]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build Models #encoder = AttnEncoder(ResidualBlock, [3, 3, 3]) encoder = ResNet(ResidualBlock, [3, 3, 3], args.embed_size) encoder.eval() # evaluation mode (BN uses moving mean/variance) # decoder = AttnDecoderRnn(args.feature_size, args.hidden_size, # len(vocab), args.num_layers) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) print('load') # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) print('load') # If use gpu if torch.cuda.is_available(): encoder.cuda(1) decoder.cuda(1) trg_bitmap_dir = args.root_path + 'bitmap/' save_directory = 'predict_base/' svg_from_out = args.root_path + save_directory + 'svg/' # svg from output caption bitmap_from_out = args.root_path + save_directory + 'bitmap/' #bitmap from out caption if not os.path.exists(bitmap_from_out): os.makedirs(bitmap_from_out) if not os.path.exists(svg_from_out): os.makedirs(svg_from_out) test_list = os.listdir(trg_bitmap_dir) for i, fname in enumerate(test_list): print(fname) test_path = trg_bitmap_dir + fname test_image = load_image(test_path, transform) image_tensor = to_var(test_image) in_sentence = gen_caption_from_image(image_tensor, encoder, decoder, vocab) print(in_sentence) image_matrix = cv2.imread(test_path) doc = gen_svg_from_predict(in_sentence.split(' '), image_matrix) with open(os.path.join(svg_from_out, fname.split('.')[0]+'.svg'), 'w+') as f: f.write(doc) cairosvg.svg2png(url=svg_from_out+ fname.split('.')[0] + '.svg', write_to= bitmap_from_out+fname)
def main(image): # Configuration for hyper-parameters config = Config() # Image Preprocessing transform = config.test_transform # Load vocabulary with open(os.path.join(config.vocab_path, 'vocab.pkl'), 'rb') as f: vocab = pickle.load(f) # Build Models encoder = EncoderCNN(config.embed_size) encoder.eval() # evaluation mode (BN uses moving mean/variance) decoder = DecoderRNN(config.embed_size, config.hidden_size, len(vocab), config.num_layers) # Load the trained model parameters encoder.load_state_dict( torch.load( os.path.join(config.teacher_cnn_path, config.trained_encoder))) decoder.load_state_dict( torch.load( os.path.join(config.teacher_lstm_path, config.trained_decoder))) # Prepare Image image = Image.open(image) image_tensor = Variable(transform(image).unsqueeze(0)) # Set initial states state = (Variable(torch.zeros(config.num_layers, 1, config.hidden_size)), Variable(torch.zeros(config.num_layers, 1, config.hidden_size))) # If use gpu if torch.cuda.is_available(): encoder.cuda() decoder.cuda() state = [s.cuda() for s in state] image_tensor = image_tensor.cuda() # Generate caption from image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature, state) sampled_ids = sampled_ids.cpu().data.numpy() # Decode word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word_id == 96: sampled_caption.append('<end>') break if word == '<end>': break sentence = ' '.join(sampled_caption) # Print out image and generated caption. print(sentence) return sentence
def main(args): # Image preprocessing transform = transforms.Compose([ transforms.Scale(args.crop_size), transforms.CenterCrop(args.crop_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) alexnet = models.alexnet(pretrained=True) alexnet2 = AlexNet2(alexnet) # Build Models encoder = EncoderCNN(4096, args.embed_size) encoder.eval() # evaluation mode (BN uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Prepare Image image = Image.open(args.image) image_tensor = Variable(transform(image).unsqueeze(0)) # Set initial states state = (Variable(torch.zeros(args.num_layers, 1, args.hidden_size)), Variable(torch.zeros(args.num_layers, 1, args.hidden_size))) # If use gpu if torch.cuda.is_available(): encoder.cuda() decoder.cuda() alexnet2.cuda() state = [s.cuda() for s in state] image_tensor = image_tensor.cuda() # Generate caption from image alexnet2(image_tensor) feature = encoder(alexnet2.fc7_value) sampled_ids = decoder.sample(feature, state) sampled_ids = sampled_ids.cpu().data.numpy() # Decode word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) # Print out image and generated caption. print(sentence)
def inference_coco(encoder_file: str, decoder_file: str, embed_size: int, hidden_size: int, from_cpu: bool) -> None: """ Displays an original image from coco test dataset and prints its associated caption. encoder_file: Name of the encoder to load. decoder_file: Name of the decoder to load. embed_size: Word embedding size for the encoder. hidden_size: Hidden layer of the LSTM size. from_cpu: Whether the model has been saved on CPU. """ # Define transform transform_test = transforms.Compose([ transforms.Resize(256), # smaller edge of image resized to 256 transforms.RandomCrop(224), # get 224x224 crop from random location transforms.ToTensor(), # convert the PIL Image to a tensor transforms.Normalize( (0.485, 0.456, 0.406), # normalize image for pre-trained model (0.229, 0.224, 0.225)) ]) # Device to use fo inference device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Create the data loader. data_loader = get_loader(transform=transform_test, mode='test') # Obtain sample image _, image = next(iter(data_loader)) # The size of the vocabulary. vocab_size = len(data_loader.dataset.vocab) # Initialize the encoder and decoder, and set each to inference mode. encoder = EncoderCNN(embed_size) encoder.eval() decoder = DecoderRNN(embed_size, hidden_size, vocab_size) decoder.eval() # Load the trained weights. if from_cpu: encoder.load_state_dict( torch.load(os.path.join('./models', encoder_file), map_location='cpu')) decoder.load_state_dict( torch.load(os.path.join('./models', decoder_file), map_location='cpu')) else: encoder.load_state_dict( torch.load(os.path.join('./models', encoder_file))) decoder.load_state_dict( torch.load(os.path.join('./models', decoder_file))) # Move models to GPU if CUDA is available. encoder.to(device) decoder.to(device) get_prediction(encoder, decoder, data_loader, device)
def main(args): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build Models encoder = EncoderCNN(args.embed_size) encoder.eval() # evaluation mode (BN uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Prepare Image image = load_image(args.image, transform) image_tensor = to_var(image, volatile=True) # If use gpu if torch.cuda.is_available(): encoder.cuda() decoder.cuda() # Generate caption from image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids.cpu().data.numpy() # Decode word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) # Print out image and generated caption. sentence = sentence.replace('<start> ', '').replace(' <end>', '').replace('.', '').strip() translator = Translator() sentence_indo = translator.translate(sentence, dest='id').text print('This is an image of: ' + sentence_indo) tts = gTTS(sentence_indo, 'id') tts.save('result.mp3') playsound('result.mp3') image = Image.open(args.image) plt.imshow(np.asarray(image)) plt.show()
def main(args): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build Models encoder = EncoderCNN(args.embed_size) encoder.eval() # evaluation mode (BN uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Prepare Image #image = load_image(args.image, transform) #image_tensor = to_var(image, volatile=True) # If use gpu if torch.cuda.is_available(): encoder.cuda() decoder.cuda() data = [] try: img_path = args.image # Prepare Image image = load_image(img_path, transform) image_tensor = to_var(image, volatile=True) # Generate caption from image feature = encoder(image_tensor) #pdb.set_trace() sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids.cpu().data.numpy() # Decode word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] if word == '<start>': continue if word == '<end>': break sampled_caption.append(word) sentence = ' '.join(sampled_caption) # Print out image and generated caption. print(sentence) data.append({'key': img_path.split('/')[-1], 'sentence': sentence}) except: print(img_path)
def main(args): # Image preprocessing prediction = [] transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build models encoder = EncoderCNN(args.embed_size).eval() # eval mode (batchnorm uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) encoder = encoder.to(device) decoder = decoder.to(device) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) dirname='' fnames = listdir(os.getcwd) #with open(dirname) for fname in fnames: #print(fname) # Prepare an image image = load_image(''+fname, transform) image_tensor = image.to(device) # Generate an caption from the image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy() # (1, max_seq_length) -> (max_seq_length) # Convert word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) current_pred = [fname, sentence] predictions.append(current_pred) # Print out the image and the generated caption print(fname) print (sentence) #image = Image.open(args.image) #plt.imshow(np.asarray(image)) df = pd.DataFrame(predictions, columns=['File Name', 'Caption']) df.to_excel('output.xls')
def main(args): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build Models encoder = EncoderCNN(args.embed_size) encoder.eval() # evaluation mode (BN uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # If use gpu if torch.cuda.is_available(): encoder.cuda() decoder.cuda() # Prepare Image image_dir = args.image images = os.listdir(image_dir) for image_id in images: if not image_id.endswith('.jpg'): continue image = os.path.join(image_dir, image_id) image = load_image(image, transform) image_tensor = to_var(image, volatile=True) # Generate caption from image try: feature, cnn_features = encoder(image_tensor) sampled_ids = decoder.sample(feature, cnn_features) sampled_ids = sampled_ids.cpu().data.numpy() except: continue # Decode word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) # Print out image and generated caption. print (image_id + '\t' + sentence)
class Neuraltalk2: def __init__(self): print("Defining I.A") # Device configuration self.device = torch.device('cpu') #vars embed_size = 256 hidden_size = 512 num_layers = 1 encoder_path = 'models/encoder-5-3000.pkl' decoder_path = 'models/decoder-5-3000.pkl' vocab_path = 'data/vocab.pkl' # Image preprocessing self.transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) with open(vocab_path, 'rb') as f: self.vocab = pickle.load(f) print("Building Model") # Build models self.encoder = EncoderCNN(embed_size).eval() # eval mode (batchnorm uses moving mean/variance) self.decoder = DecoderRNN(embed_size, hidden_size, len(self.vocab), num_layers) self.encoder = self.encoder.to(self.device) self.decoder = self.decoder.to(self.device) print("loading checkpoint") # Load the trained model parameters self.encoder.load_state_dict(torch.load(encoder_path)) self.decoder.load_state_dict(torch.load(decoder_path)) def eval_image(self, image_path): # Prepare an image image = load_image(image_path, self.transform) image_tensor = image.to(self.device) # Generate an caption from the image feature = self.encoder(image_tensor) sampled_ids = self.decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy() # Convert word_ids to words sampled_caption = [] for word_id in sampled_ids: word = self.vocab.idx2word[word_id] if word == '<end>': break if word == '<start>': continue sampled_caption.append(word) sentence = ' '.join(sampled_caption) return sentence
def main(args): transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build Models encoder = EncoderCNN(args.embed_size) encoder.eval() # evaluation mode (BN uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Prepare Image image = load_image(args.image, transform) image_tensor = to_var(image, volatile=True) # If use gpu if torch.cuda.is_available(): encoder.cuda() decoder.cuda() # Generate caption from image feature = encoder(image_tensor) sentence = decode(feature,[],decoder,vocab) print (sentence) user_input = raw_input("Does it make sense to you?(y/n)\n") if str(user_input) == "n": f = open('data/step_1/caption_1.txt','r') ground_true = f.read() teach_wordid = [] teach_wordid.append(vocab.word2idx["<start>"]) while(True): print "This is the ground true:\n"+ground_true+"\n"+\ "###################################################\n" reference = ground_true.split() hypothesis = sentence.split() BLEUscore = nltk.translate.bleu_score.sentence_bleu([reference], hypothesis) print "Current BLEU score is "+str(BLEUscore) word = raw_input("next word:\n") word_idx = vocab.word2idx[word] teach_wordid.append(word_idx) sentence = decode(feature,teach_wordid,decoder,vocab) print "###################################################\n" print "Current Translated sentence is: \n"+sentence+"\n"
def main(args): transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) vocab = Vocabulary.load_vocab(args['data_dir']) args['vocab_size'] = len(vocab) encoder = EncoderCNN(args).eval() decoder = DecoderRNN(args) encoder.to(device) decoder.to(device) encoder.load_state_dict( torch.load(os.path.join(args['model_dir'], args['encoder_name']))) decoder.load_state_dict( torch.load(os.path.join(args['model_dir'], args['decoder_name']))) test_caption_list = [] for file_name in os.listdir( os.path.join(args['data_dir'], args['image_dir'])): if os.path.isfile( os.path.join(args['data_dir'], args['image_dir'], file_name)): image = load_image( os.path.join(args['data_dir'], args['image_dir'], file_name), transform) image_tensor = image.to(device) else: continue feature = encoder(image_tensor) sample_ids = decoder.sample(feature) sample_ids = sample_ids[0].cpu().numpy() sample_caption = [] for word_id in sample_ids: word = vocab.idx2word[word_id] sample_caption.append(word) if word == '<end>': break sentence = ' '.join(sample_caption) print(sentence) test_caption_list.append((file_name, sentence)) # image=Image.open(os.path.join(args['data_dir'],args['image_dir'],file_name)) # plt.imshow(np.asarray(image)) with open(os.path.join(args['data_dir'], 'test_caption.txt'), 'w') as f: for item in test_caption_list: f.write('image_name:{} ---- generated_caption:{}\n'.format( item[0], item[1])) f.write('\n')
def predict(self, args): print('predict..start') device = torch.device('cpu') # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # Load vocabulary wrapper # Load vocabulary wrapper #vocab = Vocabulary() with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build models encoder = EncoderCNN(args.embed_size).eval( ) # eval mode (batchnorm uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) encoder = encoder.to(device) decoder = decoder.to(device) # Load the trained model parameters encoder.load_state_dict( torch.load(args.encoder_path, map_location=device)) decoder.load_state_dict( torch.load(args.decoder_path, map_location=device)) # Prepare an image image = self.load_image(args.image, transform) image_tensor = image.to(device) # Generate an caption from the image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy( ) # (1, max_seq_length) -> (max_seq_length) # Convert word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) # Print out the image and the generated caption print(sentence) return sentence
def main(): st.title('Image Captioning App') st.markdown(STYLE, unsafe_allow_html=True) file = st.file_uploader("Upload file", type=["png", "jpg", "jpeg"]) show_file = st.empty() if not file: show_file.info("Please upload a file of type: " + ", ".join(["png", "jpg", "jpeg"])) return content = file.getvalue() show_file.image(file) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") encoder_file = 'encoder-5-batch-128-hidden-256-epochs-5.pkl' decoder_file = 'decoder-5-batch-128-hidden-256-epochs-5.pkl' embed_size = 300 hidden_size = 256 vocab_size, word2idx, idx2word = get_vocab() encoder = EncoderCNN(embed_size) encoder.eval() decoder = DecoderRNN(embed_size, hidden_size, vocab_size) decoder.eval() encoder.load_state_dict(torch.load(os.path.join('./models', encoder_file))) decoder.load_state_dict(torch.load(os.path.join('./models', decoder_file))) encoder.to(device) decoder.to(device) transform_test = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) PIL_image = Image.open(file).convert('RGB') orig_image = np.array(PIL_image) image = transform_test(PIL_image) image = image.to(device).unsqueeze(0) features = encoder(image).unsqueeze(1) output = decoder.sample(features) sentence = clean_sentence(output, idx2word) st.info("Generated caption --> " + sentence) file.close()
def main2(image, encoder_path='models/encoder-5-3000.pkl', decoder_path='models/decoder-5-3000.pkl', vocab_path="data/vocab.pkl", embed_size=256, hidden_size=512, num_layers=1): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # Load vocabulary wrapper with open(vocab_path, 'rb') as f: vocab = pickle.load(f) # Build models encoder = EncoderCNN( embed_size).eval() # eval mode (batchnorm uses moving mean/variance) decoder = DecoderRNN(embed_size, hidden_size, len(vocab), num_layers) encoder = encoder.to(device) decoder = decoder.to(device) # Load the trained model parameters encoder.load_state_dict(torch.load(encoder_path)) decoder.load_state_dict(torch.load(decoder_path)) # Prepare an image image = load_image(image, transform) image_tensor = image.to(device) # Generate an caption from the image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy( ) # (1, max_seq_length) -> (max_seq_length) # Convert word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) # Print out the image and the generated caption print(sentence) #image = Image.open(args.image) #plt.imshow(np.asarray(image)) return sentence
def sample(args): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build models encoder = EncoderCNN(args.embed_size).eval( ) # eval mode (batchnorm uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) dissection.replace_layers(encoder, [ ('resnet.7.2.bn3', 'final_layer'), ]) vec = torch.zeros(2048).to(device) vec[0] = 100 encoder.replacement['final_layer'] = vec encoder = encoder.to(device) decoder = decoder.to(device) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Prepare an image image = load_image(args.image, transform) image_tensor = image.to(device) # Generate an caption from the image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy( ) # (1, max_seq_length) -> (max_seq_length) # Convert word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) # Print out the image and the generated caption print(sentence)
def main(args): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build Models encoder = EncoderCNN(args.embed_size) encoder.eval() # evaluation mode (BN uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Prepare Image image = load_image(args.image, transform) image_tensor = to_var(image, volatile=True) # If use gpu if torch.cuda.is_available(): encoder.cuda() decoder.cuda() bar = Bar('Processing', max=100) for i in range(100): bar.next() # Generate caption from image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids.cpu().data.numpy() # Decode word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) bar.finish() # Print out image and generated caption. print("\n") print(sentence) image = Image.open(args.image) imgplot = plt.imshow(np.asarray(image)) plt.show()
def main(cfg): # print(cfg.pretty()) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(cfg.image.mean, cfg.image.std) ]) print(hydra.utils.to_absolute_path(cfg.train.vocab_path)) with open(hydra.utils.to_absolute_path(cfg.train.vocab_path), 'rb') as f: vocab = pickle.load(f) # モデルの構築 encoder = EncoderCNN(cfg.train.embed_size).eval() decoder = DecoderRNN(cfg.train.embed_size, cfg.train.hidden_size, len(vocab), cfg.train.num_layers) encoder = encoder.to(device) decoder = decoder.to(device) # 学習済みモデルのパラメータを読み込む encoder.load_state_dict( torch.load(hydra.utils.to_absolute_path(cfg.train.encoder_path))) decoder.load_state_dict( torch.load(hydra.utils.to_absolute_path(cfg.train.decoder_path))) with open(json_dir, encoding='utf-8') as f: data = json.loads(f.read()) for key in data['images']: img_file_name = key['file_name'] img_file_path = base_dir + '/data/val2014/' + img_file_name # 画像の準備 image = load_image(hydra.utils.to_absolute_path(img_file_path), transform) image_tensor = image.to(device) # 入力した画像からキャプションを生成する feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy() # word_idsをwordに変換する sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break # <start>,<end>,"."を取り除いて処理を行う sentence = ' '.join(sampled_caption[1:-2]) print(sentence)
class BFM(nn.Module): def __init__(self, args, vocab_len): super(BFM, self).__init__() self.encoder = EncoderCNN(args.embed_size).eval().cpu() self.encoder.load_state_dict(torch.load('encoder.ckpt', map_location=torch.device('cpu'))) self.decoder = DecoderRNN(args.embed_size, args.hidden_size, vocab_len, args.num_layers).eval().cpu() self.decoder.forward = self.decoder.sample self.decoder.load_state_dict(torch.load('decoder.ckpt', map_location=torch.device('cpu'))) def forward(self, image): feature = self.encoder(image) sampled_ids = self. decoder(feature) return sampled_ids
def main(args): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build models encoder = EncoderCNN(args.embed_size).eval( ) # eval mode (batchnorm uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) encoder = encoder.to(device) decoder = decoder.to(device) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Prepare an image image = load_image(args.image, transform) image_tensor = image.to(device) # Generate an caption from the image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy( ) # (1, max_seq_length) -> (max_seq_length) # Convert word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sampled_caption.remove('<end>') sampled_caption.remove('<start>') sentence = ' '.join(sampled_caption) # Print out the image and the generated caption print(sentence) f = open("demofile3.txt", "w") f.truncate(0) f.write(sentence) f.close() image = Image.open(args.image) plt.imshow(np.asarray(image))
def main(args): # Image preprocessing transform = transforms.Compose([ transforms.Scale(args.crop_size), #transforms.CenterCrop(args.crop_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build Models encoder = EncoderCNN(args.embed_size) encoder.eval() # evaluation mode (BN uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Prepare Image image = load_image(args.image, transform) image_tensor = to_var(image, volatile=True) # If use gpu if torch.cuda.is_available(): encoder.cuda() decoder.cuda() image_tensor = image_tensor.cuda() # Generate caption from image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature, args.length) sampled_ids = sampled_ids.cpu().data.numpy() # Decode word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] if word != '<start>' and word != '<end>': sampled_caption.append(word) if word == '<end>': break sentence = ''.join(sampled_caption) # Print out image and generated caption. print(sentence)
def main(args): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build Models encoder = EncoderCNN(args.embed_size) encoder.eval() # evaluation mode (BN uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Prepare Image image = load_image(args.image, transform) image_tensor = to_var(image, volatile=True) # If use gpu if torch.cuda.is_available(): encoder.cuda() decoder.cuda() # Generate caption from image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids.cpu().data.numpy() # Decode word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) # Print out image and generated caption. print (sentence) image = Image.open(args.image) plt.imshow(np.asarray(image))
def main(args): # Build models encoder = EncoderCNN(args.embed_size).eval( ) # eval mode (batchnorm uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) encoder = encoder.to(device) decoder = decoder.to(device) # Load the trained model parameters encoder.load_state_dict(torch.load( args.encoder_path)) #path for dumbing output of encoder model decoder.load_state_dict(torch.load( args.decoder_path)) #path for dumbing output of decoder model test_data = generate_training_data(5) textures_test = generate_textures(test_data) transforms_test = generate_transforms(test_data) for i in range(len(textures_test)): plt.imsave('predictions/texture4_0%i.png' % i, textures_test[i], cmap="gray") print(transforms_test) predicted_progs = [] for texture in textures_test: texture = torch.tensor(texture, device=device) texture = texture.unsqueeze(0) texture = texture.unsqueeze( 0) #for EncoderCNN ought to unsqueeze twice feature = encoder(texture) sampled_seq = decoder.sample(feature) sampled_seq = sampled_seq[0].cpu().numpy( ) # (1, max_seq_length) -> (max_seq_length) # Convert sampled sequence of transforms to words prog = [] for int_word in sampled_seq: word = int_to_word(int_word) prog.append(word) if word == '<end>': break trans_seq = '-->'.join(prog) predicted_progs.append([trans_seq]) # Print out the sequence of generated transform sequences print(predicted_progs)
def main(args): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build models encoder = EncoderCNN(args.embed_size).eval() # eval mode (batchnorm uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) encoder = encoder.to(device) decoder = decoder.to(device) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Prepare an image ''' image = load_image(args.image, transform) image_tensor = image.to(device) ''' data_loader, _ = get_loader(transforms=False) inp, targets = next(iter(data_loader)) audio = inp_transform(inp) audio = audio.to(device) # Generate an caption from the image feature = encoder(audio) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy() # (1, max_seq_length) -> (max_seq_length) # Convert word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) # Print out the image and the generated caption print("Logits : {}\nTarget : {}".format(sentence, targets)) '''
def main(args): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build models encoder = EncoderCNN(args.embed_size).eval() # eval mode (batchnorm uses moving mean/variance) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers) encoder = encoder.to(device) decoder = decoder.to(device) # Load the trained model parameters encoder.load_state_dict(torch.load(args.encoder_path)) decoder.load_state_dict(torch.load(args.decoder_path)) # Prepare an image image = load_image(args.image, transform) image_tensor = image.to(device) # Generate an caption from the image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy() # (1, max_seq_length) -> (max_seq_length) # Convert word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) # Print out the image and the generated caption print (sentence) image = Image.open(args.image) plt.imshow(np.asarray(image))
vocab = data_loader.dataset.vocab # The size of the vocabulary. vocab_size = len(vocab) # Initialize the encoder and decoder. encoder = EncoderCNN(embed_size) decoder = DecoderRNN(embed_size, hidden_size, vocab_size) device = torch.device("cpu") # encoder.to(device) # decoder.to(device) # Load the pretrained model encoder.load_state_dict(torch.load(PRETRAINED_MODEL_PATH.format('encoder'))) decoder.load_state_dict(torch.load(PRETRAINED_MODEL_PATH.format('decoder'))) encoder.eval() decoder.eval() images, conv_images = next(iter(data_loader)) features = encoder(conv_images).unsqueeze(1) output = decoder.sample(features, max_len=max_len) word_list = [] for word_idx in output: if word_idx == vocab.word2idx[vocab.start_word]: continue if word_idx == vocab.word2idx[vocab.end_word]: break word_list.append(vocab.idx2word[word_idx])