Example #1
0
def main():
    # Load vocabulary wrapper.
    with open(vocab_path) as f:
        vocab = pickle.load(f)

    encoder = EncoderCNN(4096, embed_dim)
    decoder = DecoderRNN(embed_dim, hidden_size, len(vocab), num_layers_rnn)
    if torch.cuda.is_available():
        encoder.cuda()
        decoder.cuda()
    # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.linear.parameters())
    optimizer = torch.optim.Adam(params, lr=0.001)

    #load data
    with open(image_data_file) as f:
        image_data = pickle.load(f)
    image_features = si.loadmat(image_feature_file)

    img_features = image_features['fc7'][0]
    img_features = np.concatenate(img_features)

    print 'here'
    iteration = 0
    save_loss = []
    for i in range(10):  # epoch
        use_caption = i % 5
        print 'Epoch', i
        for x, y in make_mini_batch(img_features,
                                    image_data,
                                    use_caption=use_caption):
            word_padding, lengths = make_word_padding(y, vocab)

            x = Variable(torch.from_numpy(x).cuda())
            word_index = Variable(torch.from_numpy(word_padding).cuda())

            encoder.zero_grad()
            decoder.zero_grad()

            features = encoder(x)
            targets = pack_padded_sequence(word_index,
                                           lengths,
                                           batch_first=True)[0]
            outputs = decoder(features, word_index, lengths)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            if iteration % 100 == 0:
                print 'loss', loss.data[0]
                save_loss.append(loss.data[0])

            iteration += 1

        torch.save(decoder.state_dict(), 'decoder.pkl')
        torch.save(encoder.state_dict(), 'encoder.pkl')
        with open('losses.txt', 'w') as f:
            print >> f, losses
Example #2
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Build the models
    encoder = EncoderCNN(args.embed_size).to(device)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers).to(device)

    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(
        encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the models
    total_step = len(data_loader)

    # For each TSP problem
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(data_loader):

            # Set mini-batch dataset
            images = images.to(device)
            captions = captions.to(device)
            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]

            # Forward, backward and optimize
            features = encoder(images)
            outputs = decoder(features, captions, lengths)
            loss = criterion(outputs, targets)
            decoder.zero_grad()
            encoder.zero_grad()
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                    .format(epoch, args.num_epochs, i, total_step, loss.item(),
                            np.exp(loss.item())))

                # Save the model checkpoints
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(args.model_path,
                                 'encoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))
Example #3
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Image preprocessing
    # Composea all processing together, to a tensor with (C,H,W) and value in range (0 - 1)
    transform = transforms.Compose([
        transforms.RandomCrop(args.crop_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    # Load vocabulary wrapper.
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    # Build data loader
    data_loader = get_loader(args.image_dir,
                             args.caption_path,
                             vocab,
                             transform,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)

    # Build the models
    encoder = EncoderCNN(args.embed_size)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers)

    if torch.cuda.is_available():
        encoder.cuda()
        decoder.cuda()

    # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.resnet.fc.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the Models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(data_loader):

            # Set mini-batch dataset
            images = Variable(images)
            captions = Variable(captions)
            print("cap size %s" % str(captions.size()))
            if torch.cuda.is_available():
                images = images.cuda()
                captions = captions.cuda()
            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]
            print(targets)
            # Forward, Backward and Optimize
            decoder.zero_grad()
            encoder.zero_grad()
            features = encoder(images)
            print("cnn feats %s" % str(features.size()))
            outputs = decoder(features, captions, lengths)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
                    % (epoch, args.num_epochs, i, total_step, loss.data[0],
                       np.exp(loss.data[0])))

            # Save the models
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-%d-%d.pkl' % (epoch + 1, i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(args.model_path,
                                 'encoder-%d-%d.pkl' % (epoch + 1, i + 1)))
Example #4
0
for epoch in range(num_epochs):
    tic = time.time()

    for i, (image, captions, lengths) in enumerate(dataset_loader):

        image = image.to(device)
        captions = captions.to(device)
        targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]

        cnn.zero_grad()
        rnn.zero_grad()

        cnn_out = cnn.forward(image)
        lstm_out = rnn.forward(cnn_out, captions, lengths)
        loss = criterion(lstm_out, targets)
        loss.backward()
        optimizer.step()

        if i % 1000 == 0:
            print(
                'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                .format(epoch, num_epochs, i, len(dataset_loader), loss.item(),
                        np.exp(loss.item())))

    toc = time.time()
    print('epoch %d time %.2f mins' % (epoch, (toc - tic) / 60))

torch.save(cnn.state_dict(), 'cnn.pkl')
torch.save(rnn.state_dict(), 'rnn.pkl')
Example #5
0
        # Get training statistics.
        stats = 'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' % (epoch, num_epochs, i_step, total_step, loss.item(), np.exp(loss.item()))
        
        # Print training statistics (on same line).
        print('\r' + stats, end="")
        sys.stdout.flush()
        
        # Print training statistics to file.
        f.write(stats + '\n')
        f.flush()
        
        # Print training statistics (on different line).
        if i_step % print_every == 0:
            print('\r' + stats)
        epoch_loss += loss.item()
    epoch_loss /= total_step

    # Save the weights.
    if save_every == -1:
        # Only save the best one so far!
        if epoch_loss <= smallest_loss:
            torch.save(decoder.state_dict(), os.path.join('./models', "{:02d}-decoder-{:.4f}.pkl".format(epoch, epoch_loss)))
            torch.save(encoder.state_dict(), os.path.join('./models', "{:02d}-encoder-{:.4f}.pkl".format(epoch, epoch_loss)))
            smallest_loss = epoch_loss
    elif epoch % save_every == 0:
        torch.save(decoder.state_dict(), os.path.join('./models', "{:02d}-decoder-{:.4f}.pkl".format(epoch, epoch_loss)))
        torch.save(encoder.state_dict(), os.path.join('./models', "{:02d}-encoder-{:.4f}.pkl".format(epoch, epoch_loss)))

# Close the training log file.
f.close()
Example #6
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Image preprocessing, normalization for the pretrained resnet
    transform = transforms.Compose([
        transforms.RandomCrop(args.crop_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])

    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    # Build data loader
    data_loader = get_loader(args.image_dir,
                             args.caption_path,
                             vocab,
                             transform,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)

    # Build the models
    encoder = EncoderCNN(args.embed_size).to(device)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers).to(device)

    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(
        encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the models
    save_in_file_loss = open(
        '/media/raid6/shivam/imagecaption/simple_cnn_img_attention/mod_epoch_loss402.txt',
        "w")
    save_in_file_perplex = open(
        '/media/raid6/shivam/imagecaption/simple_cnn_img_attention/mod_epoch_perplex402.txt',
        "w")
    save_in_file = open(
        '/media/raid6/shivam/imagecaption/simple_cnn_img_attention/mod_step_loss402.txt',
        "w")
    loss_per_epoch = {}
    perplex_per_epoch = {}
    total_step = len(data_loader)
    print('\ntotal-step\n')
    print(total_step)

    for epoch in range(args.num_epochs):

        total_loss = 0
        for i, (images, captions, lengths) in enumerate(data_loader):

            # Set mini-batch dataset
            images = images.to(device)
            captions = captions.to(device)
            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]

            # Forward, backward and optimize
            features = encoder(images)
            outputs = decoder(features, captions, lengths)
            loss = criterion(outputs, targets)
            decoder.zero_grad()
            encoder.zero_grad()
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                    .format(epoch, args.num_epochs, i, total_step, loss.item(),
                            np.exp(loss.item())))

                total_loss += loss.item()

                text = 'Epoch : ' + str(epoch) + '\nStep : ' + str(
                    i) + '\nLoss : ' + str(
                        loss.item()) + '\nPerplexity : ' + str(
                            np.exp(loss.item()))
                print('\ntext\n')
                print(text)
                save_in_file.write(text)

            # Save the model checkpoints

            if (i + 1) % args.save_step == 0:
                print('saving')
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(args.model_path,
                                 'encoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))

        loss_per_epoch[epoch + 1] = total_loss / (total_step * args.batch_size)
        loss_text = str(epoch + 1) + ' : ' + str(loss_per_epoch[epoch + 1])
        save_in_file_loss.write(loss_text)
        save_in_file_loss.write('\n')

        print('\nloss_text : ' + loss_text)

        perplex_per_epoch[epoch + 1] = np.exp(loss_per_epoch[epoch + 1])
        perplex_text = str(epoch + 1) + ' : ' + str(
            perplex_per_epoch[epoch + 1])
        save_in_file_perplex.write(perplex_text)
        save_in_file_perplex.write('\n')
        print('\nperplex_text : ' + perplex_text)

    save_in_file.close()
        
        # Update the parameters in the optimizer.
        optimizer.step()
        
        # Get training statistics.
        stats = 'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' % (epoch, num_epochs, i_step, total_step, loss.item(), np.exp(loss.item()))
        
        # Print training statistics (on same line).
        print('\r' + stats, end="")
        sys.stdout.flush()
        
        # Print training statistics to file.
        f.write(stats + '\n')
        f.flush()
        
        # Print training statistics (on different line).
        if i_step % print_every == 0:
            print('\r' + stats)
        
#         if epoch == 3 and i_step % 5000 == 0:
#             torch.save(decoder.state_dict(), os.path.join('./models', 'decoder-%d-%d.pkl' % epoch, i_step))
#             torch.save(encoder.state_dict(), os.path.join('./models', 'encoder-%d-%d.pkl' % epoch, i_step))
    # Save the weights.
    if epoch % save_every == 0:
        torch.save(decoder.state_dict(), os.path.join(output_path, 'decoder-%d.pkl' % epoch))
        torch.save(encoder.state_dict(), os.path.join(output_path, 'encoder-%d.pkl' % epoch))
    
    scheduler.step()
        
# Close the training log file.
f.close()
Example #8
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    # Build data loader
    data_loader = get_caption_loader(args.caption_path,
                                     vocab,
                                     75,
                                     args.batch_size,
                                     shuffle=True,
                                     num_workers=args.num_workers)

    # Build the models
    encoder = EncoderRNN(len(vocab), args.embed_size,
                         args.hidden_size).to(device)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers).to(device)

    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(
        encoder.embedding.parameters()) + list(encoder.rnn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (captions_src, captions_tgt, lengths) in enumerate(data_loader):

            # Set mini-batch dataset
            captions_src = captions_src.to(device)
            captions_tgt = captions_tgt.to(device)
            targets = pack_padded_sequence(captions_tgt,
                                           lengths,
                                           batch_first=True)[0]

            # Forward, backward and optimize
            enc_output, enc_hidden = encoder(captions_src)
            outputs = decoder(enc_hidden[:, -1:, :], captions_tgt, lengths)
            loss = criterion(outputs, targets)
            decoder.zero_grad()
            encoder.zero_grad()
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                    .format(epoch, args.num_epochs, i, total_step, loss.item(),
                            np.exp(loss.item())))

            # Save the model checkpoints
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(args.model_path,
                                 'encoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))
def main(args):
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Build the models, can use a feedforward/convolutional encoder and an RNN decoder
    encoder = EncoderCNN(args.embed_size).to(
        device)  #can be sequential or convolutional
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers).to(device)
    # Loss and optimizer
    criterion1 = nn.CrossEntropyLoss()
    criterion2 = nn.NLLLoss()
    softmax = nn.LogSoftmax(dim=1)
    params = list(decoder.parameters()) + list(encoder.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)
    total_training_steps = args.num_iters
    losses = []
    perplexity = []
    for epoch in range(args.num_epochs):
        for i in range(total_training_steps):
            prog_data = generate_training_data(args.batch_size)

            images = [im[0] for im in prog_data]
            transforms = [transform[1] for transform in prog_data]

            [ele.insert(0, '<start>')
             for ele in transforms]  #start token for each sequence
            [ele.append('<end>')
             for ele in transforms]  #end token for each sequence

            lengths = [len(trans) for trans in transforms]

            maximum_len = max(lengths)
            for trans in transforms:
                if len(trans) != maximum_len:
                    trans.extend(['pad'] * (maximum_len - len(trans)))

            padded_lengths = [len(trans) for trans in transforms]
            transforms = [[word_to_int(word) for word in transform]
                          for transform in transforms]
            transforms = torch.tensor(transforms, device=device)
            images = torch.tensor(images, device=device)
            images = images.unsqueeze(
                1)  #Uncomment this line when training using EncoderCNN
            lengths = torch.tensor(lengths, device=device)
            padded_lengths = torch.tensor(padded_lengths, device=device)
            targets = pack_padded_sequence(transforms,
                                           padded_lengths,
                                           batch_first=True)[0]

            features = encoder(images)
            outputs = decoder(features, transforms, padded_lengths)
            #print(outputs)

            loss = criterion1(outputs, targets)
            losses.append(loss.item())
            perplexity.append(np.exp(loss.item()))

            decoder.zero_grad()
            encoder.zero_grad()
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f},Perplexity: {:5.4f}'
                    .format(epoch, args.num_epochs, i, total_training_steps,
                            loss.item(), np.exp(loss.item())))

            # Save the model checkpoints
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(args.model_path,
                                 'encoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))

    y = losses
    z = perplexity
    x = np.arange(len(losses))
    plt.plot(x, y, label='Cross Entropy Loss')
    plt.plot(x, z, label='Perplexity')
    plt.xlabel('Iterations')
    plt.ylabel('Cross Entropy Loss and Perplexity')
    plt.title("Cross Entropy Loss and Model Perplexity During Training")
    plt.legend()
    plt.savefig('plots/plots_cnn/cnn4_gpu', dpi=100)
Example #10
0
class Worker:
    def __init__(self, args):
        # Initialize MPI/NCCL and set topology variables
        self.init_dist(args.gpu_only)
        self.rank = self.dist.get_rank()
        self.world_size = self.dist.get_world_size()
        self.local_rank = self.dist.get_local_rank()
        self.local_size = self.dist.get_local_size()
        self.n_gpus = self.dist.get_n_gpus()
        self.n_nodes = self.world_size / self.local_size
        self.node = self.rank // self.local_size
        self.n_cpu_workers = (self.local_size - self.n_gpus) * self.n_nodes
        self.n_gpu_workers = self.n_gpus * self.n_nodes

        # Set RNG seed for reproducibility, can be left on
        torch.manual_seed(1234)

        # CuDNN reproducibility
        if args.reproducible:
            torch.backends.cudnn.deterministic = True
            torch.backends.cudnn.benchmark = False

        # Set number of threads
        if self.dist.is_cpu_rank():
            #torch.set_num_threads(args.num_threads)
            print("[Rank {}] Setting number of OMP threads to {}".format(
                self.rank, args.num_threads),
                  flush=True)

        # Calculate batch sizes
        self.total_batch_size = args.batch_size
        self.cpu_batch_size = args.cpu_batch_size
        assert ((self.total_batch_size - self.cpu_batch_size * self.n_cpu_workers * self.n_nodes) \
            % (self.n_gpus * self.n_nodes) == 0), "GPU batch size is not an integer"
        self.gpu_batch_size = int((self.total_batch_size - self.cpu_batch_size * self.n_cpu_workers * self.n_nodes) \
            / (self.n_gpus * self.n_nodes))
        self.batch_size = self.cpu_batch_size if self.dist.is_cpu_rank(
        ) else self.gpu_batch_size

        print("[Rank {}] Current CUDA device: {}".format(
            self.rank, torch.cuda.current_device()),
              flush=True)

    def init_dist(self, gpu_only):
        # C++ extension module with JIT compilation
        dist_module = load(
            name="dist",
            sources=["dist.cu"],
            verbose=True,
            with_cuda=True,
            extra_cuda_cflags=[
                '-ccbin',
                'g++',
                '-std=c++11',
                '-O3',
                #'-I/usr/mpi/gcc/openmpi-2.1.2-hfi/include',
                #'-I/usr/mpi/gcc/mvapich2-2.3b-hfi/include',
                '-I/opt/intel/compilers_and_libraries_2017.4.196/linux/mpi/intel64/include',
                #'-I/opt/intel/compilers_and_libraries_2017.4.196/linux/mpi/include64',
                '-I/pylon5/ac7k4vp/jchoi157/pytorch/build/nccl/include'
            ],
            extra_ldflags=[
                '-L/opt/packages/cuda/9.2/lib64',
                '-lcudart',
                '-lrt',
                #'-L/usr/mpi/gcc/openmpi-2.1.2-hfi/lib64', '-lmpi',
                #'-L/usr/mpi/gcc/mvapich2-2.3b-hfi/lib', '-lmpi',
                '-L/opt/intel/compilers_and_libraries_2017.4.196/linux/mpi/intel64/lib',
                '-lmpi',
                #'-L/opt/intel/compilers_and_libraries_2017.4.196/linux/mpi/lib64', '-lmpi',
                '-L/pylon5/ac7k4vp/jchoi157/pytorch/build/nccl/lib',
                '-lnccl'
            ],
            build_directory="/home/jchoi157/torch_extensions")
        self.dist = dist_module.DistManager(gpu_only, False)

    def average_gradients(self):
        # Only all-reduce decoder parameters since encoder is pre-trained
        for param in self.decoder.parameters():
            if self.dist.is_cpu_rank():
                param.grad.data = param.grad.data.cuda(0, non_blocking=True)
                param.grad.data *= (self.cpu_batch_size /
                                    self.total_batch_size)
            else:
                param.grad.data *= (self.gpu_batch_size /
                                    self.total_batch_size)

            self.dist.hetero_allreduce(param.grad.data)

            if self.dist.is_cpu_rank():
                param.grad.data = param.grad.data.cpu()

    def train(self, args):
        # Create model directory
        if not os.path.exists(args.model_path):
            os.makedirs(args.model_path)

        # Image preprocessing, normalization for the pretrained resnet
        transform = transforms.Compose([
            transforms.RandomCrop(args.crop_size),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
        ])

        # Load vocabulary wrapper
        with open(args.vocab_path, 'rb') as f:
            vocab = pickle.load(f)

        # Build data loader
        data_loader = get_loader(
            args.image_dir,
            args.caption_path,
            vocab,
            transform,
            self.rank,
            self.world_size,
            self.local_size,
            self.n_gpus,
            self.total_batch_size,
            self.cpu_batch_size,
            self.gpu_batch_size,
            self.batch_size,
            shuffle=(False if args.reproducible else True),
            no_partition=args.no_partition)
        self.num_batches = len(data_loader)
        print("[Rank {}] batch size {}, num batches {}".format(
            self.rank,
            self.total_batch_size if args.no_partition else self.batch_size,
            self.num_batches),
              flush=True)

        # Build the models
        self.encoder = EncoderCNN(args.embed_size)
        self.decoder = DecoderRNN(args.embed_size, args.hidden_size,
                                  len(vocab), args.num_layers)
        if self.dist.is_gpu_rank():
            self.encoder = self.encoder.cuda(self.local_rank)
            self.decoder = self.decoder.cuda(self.local_rank)

        # Loss and optimizer
        criterion = nn.CrossEntropyLoss()
        params = list(self.decoder.parameters()) + list(
            self.encoder.linear.parameters()) + list(
                self.encoder.bn.parameters())
        optimizer = torch.optim.Adam(params, lr=args.learning_rate)

        # Train the models
        total_step = len(data_loader)
        for epoch in range(args.num_epochs):
            epoch_start_time = time.time()
            batch_time_sum = 0
            batch_time_total = 0
            processed_batches = 0
            processed_batches_total = 0
            batch_start_time = time.time()
            for i, (images, captions, lengths) in enumerate(data_loader):
                # Set mini-batch dataset
                if self.dist.is_gpu_rank():
                    images = images.cuda(self.local_rank)
                    captions = captions.cuda(self.local_rank)
                targets = pack_padded_sequence(captions,
                                               lengths,
                                               batch_first=True)[0]

                # Forward, backward, all-reduce and optimize
                features = self.encoder(images)
                outputs = self.decoder(features, captions, lengths)
                loss = criterion(outputs, targets)
                self.decoder.zero_grad()
                self.encoder.zero_grad()
                loss.backward()
                if not args.no_partition:
                    self.average_gradients()
                optimizer.step()

                batch_time = time.time() - batch_start_time
                batch_time_sum += batch_time
                batch_time_total += batch_time
                processed_batches += 1
                processed_batches_total += 1

                saved_loss = loss.item()
                # Print log info
                if i % args.log_step == 0 and i != 0:
                    print(
                        'Rank [{}], Epoch [{}/{}], Step [{}/{}], Average time: {:.6f}, Loss: {:.4f}, Perplexity: {:5.4f}'
                        .format(self.rank, epoch, args.num_epochs, i,
                                total_step, batch_time_sum / processed_batches,
                                saved_loss, np.exp(saved_loss)),
                        flush=True)
                    batch_time_sum = 0
                    processed_batches = 0

                # Save the model checkpoints
                if (i + 1) % args.save_step == 0:
                    torch.save(
                        self.decoder.state_dict(),
                        os.path.join(
                            args.model_path,
                            'decoder-{}-{}.ckpt'.format(epoch + 1, i + 1)))
                    torch.save(
                        self.encoder.state_dict(),
                        os.path.join(
                            args.model_path,
                            'encoder-{}-{}.ckpt'.format(epoch + 1, i + 1)))

                batch_start_time = time.time()

            epoch_time = time.time() - epoch_start_time
            print(
                '!!! Rank [{}], Epoch [{}], Time: {:.6f}, Average batch time: {:.6f}, Loss: {:.4f}, Perplexity: {:5.4f}'
                .format(self.rank, epoch, epoch_time,
                        batch_time_total / processed_batches_total, saved_loss,
                        np.exp(saved_loss)),
                flush=True)
def main(args):

    # random set
    manualSeed = random.randint(1, 100)
    # print("Random Seed: ", manualSeed)
    random.seed(manualSeed)
    torch.manual_seed(manualSeed)
    torch.cuda.manual_seed_all(manualSeed)

    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)
    
    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    audio_len, comment_len, mfcc_dim = caculate_max_len(args.audio_dir,args.text_path, vocab)
    # mfcc_features = audio_preprocess(args.audio_dir, N, AUDIO_LEN, MFCC_DIM).astype(np.float32)
    
    # Build data loader
    data_loader = data_get(args.audio_dir,audio_len, args.text_path, comment_len, vocab )

    # Build the models
    encoder = EncoderRNN(mfcc_dim, args.embed_size, args.hidden_size).to(device)
    decoder = DecoderRNN(args.embed_size+Z_DIM, args.hidden_size, len(vocab), args.num_layers).to(device)
    # decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers).to(device)
    
    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)
 
    
    # Train the models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, ((audio,audio_len), (comment,comment_len)) in enumerate(data_loader):
            audio = audio.to(device)
            audio = audio.unsqueeze(0)
            comment = comment.to(device)
            comment = comment.unsqueeze(0)

            targets = pack_padded_sequence(comment, [comment_len], batch_first=True)[0]
            
            # Forward, backward and optimize
            audio_features = encoder(audio, [audio_len])
            if(Z_DIM>0):
                z = Variable(torch.randn(audio_features.shape[0], Z_DIM)).cuda()
                audio_features = torch.cat([z,audio_features],1)
            outputs = decoder(audio_features, comment, [comment_len])
            loss = criterion(outputs, targets)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'.format(epoch, args.num_epochs, i, total_step, loss.item(), np.exp(loss.item())))
                
            # Save the model checkpoints
        if (epoch+1) % args.save_step == 0:
            torch.save(decoder.state_dict(), os.path.join(
                args.model_path, 'decoder-{}-{}.ckpt'.format(epoch+1, i+1)))
            torch.save(encoder.state_dict(), os.path.join(
                args.model_path, 'encoder-{}-{}.ckpt'.format(epoch+1, i+1)))
Example #12
0
def main():
    # Configuration for hyper-parameters
    config = Config()
    
    # Create model directory
    if not os.path.exists(config.model_path):
        os.makedirs(config.model_path)
    
    # Image preprocessing
    transform = config.train_transform
    
    # Load vocabulary wrapper
    with open(os.path.join(config.vocab_path, 'vocab.pkl'), 'rb') as f:
        vocab = pickle.load(f)

    # Build data loader
    image_path = os.path.join(config.image_path, 'train2014')
    json_path = os.path.join(config.caption_path, 'captions_train2014.json')
    train_loader = get_data_loader(image_path, json_path, vocab, 
                                   transform, config.batch_size,
                                   shuffle=True, num_workers=config.num_threads) 
    total_step = len(train_loader)

    # Build Models
    encoder = EncoderCNN(config.embed_size)
    decoder = DecoderRNN(config.embed_size, config.hidden_size, 
                         len(vocab), config.num_layers)
    
    if torch.cuda.is_available()
        encoder.cuda()
        decoder.cuda()

    # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.resnet.fc.parameters())
    optimizer = torch.optim.Adam(params, lr=config.learning_rate)
    
    # Train the Models
    for epoch in range(config.num_epochs):
        for i, (images, captions, lengths) in enumerate(train_loader):
            
            # Set mini-batch dataset
            images = Variable(images)
            captions = Variable(captions)
            if torch.cuda.is_available():
                images = images.cuda()
                captions = captions.cuda()
            targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
            
            # Forward, Backward and Optimize
            decoder.zero_grad()
            encoder.zero_grad()
            features = encoder(images)
            outputs = decoder(features, captions, lengths)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            # Print log info
            if i % config.log_step == 0:
                print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
                      %(epoch, config.num_epochs, i, total_step, 
                        loss.data[0], np.exp(loss.data[0]))) 
                
            # Save the Model
            if (i+1) % config.save_step == 0:
                torch.save(decoder.state_dict(), 
                           os.path.join(config.model_path, 
                                        'decoder-%d-%d.pkl' %(epoch+1, i+1)))
                torch.save(encoder.state_dict(), 
                           os.path.join(config.model_path, 
                                        'encoder-%d-%d.pkl' %(epoch+1, i+1)))
Example #13
0
best_val_accuracy = 0
for epoch in range(args.num_epoch):
	# optimizer.step()
	train(args, trainloader, epoch)
	val_acc = validation(args, valloader, epoch)
	
	if val_acc > best_val_accuracy:
		print("Saving the models")

		torch.save(force_encoder_model.state_dict(), os.path.join(
			args.model_dir, 'force_encoder.ckpt'))

		torch.save(rgb_mask_encoder_model.state_dict(), os.path.join(
        	args.model_dir, 'rgb_mask_encoder.ckpt'))

		torch.save(decoder_model.state_dict(), os.path.join(
        	args.model_dir, 'decoder.ckpt'))

		best_val_accuracy = val_acc
	


			







Example #14
0
File: train.py Project: afcarl/sn
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    worker_thread_count = 1
    retry_for_failed = 2

    # Image preprocessing
    # For normalization, see https://github.com/pytorch/vision#models
    transform = transforms.Compose([
        #     transforms.RandomCrop(args.crop_size),
        #     transforms.RandomHorizontalFlip(),
        transforms.Scale(args.crop_size),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    #transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])

    # Load vocabulary wrapper.
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    # Build data loader
    data_loader = get_loader(args.image_dir,
                             vocab,
                             transform,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)

    # Build the models
    encoder = EncoderCNN(args.embed_size)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers)

    if torch.cuda.is_available():
        encoder.cuda()
        decoder.cuda()

    # Loss and Optimizer
    criterion = nn.L1Loss()
    params = list(decoder.parameters()) + list(
        encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the Models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(data_loader):
            processed_items = []
            threads = []
            has_data_to_process = True

            def do_request(item):
                position = item['position']
                #print(position)
                #print(item)
                retry = retry_for_failed
                while retry:
                    r = requests.post('http://localhost:4567/', data=item)
                    if r.status_code == 200:
                        pil = Image.open(io.BytesIO(r.content)).convert('RGB')
                        processed_items[position] = transform(pil)
                        #print(position, processed_items[position])
                        break
                    else:
                        print("shouldb be here")
                        time.sleep(2)
                        retry -= 1

            # Set mini-batch dataset
            image_tensors = to_var(images, volatile=True)
            captions = to_var(captions)
            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]
            #print(images.size())
            #print(torch.equal(images[0] ,images[1]))

            # Forward, Backward and Optimize
            decoder.zero_grad()
            encoder.zero_grad()
            features = encoder(image_tensors)
            outputs = decoder(features, captions, lengths)
            codes = []

            def worker():
                while items_to_process.qsize() > 0 or has_data_to_process:
                    item = items_to_process.get()
                    if item is None:
                        break
                    do_request(item)
                    items_to_process.task_done()
                print("ended thread processing")

            for j in range(worker_thread_count):
                t = threading.Thread(target=worker)
                t.daemon = True  # thread dies when main thread (only non-daemon thread) exits.
                t.start()
                threads.append(t)
            for ii, image in enumerate(images):
                image_tensor = to_var(image.unsqueeze(0), volatile=True)
                feature = encoder(image_tensor)
                sampled_ids = decoder.sample(feature)
                sampled_ids = sampled_ids.cpu().data.numpy()
                sampled_caption = []
                for word_id in sampled_ids:
                    word = vocab.idx2word[word_id]
                    sampled_caption.append(word)
                    if word == '<end>':
                        break
                sentence = ' '.join(sampled_caption)
                payload = {'code': sentence}
                data = {'position': ii, 'code': sentence}
                items_to_process.put(data)
                processed_items.append('failed')
                codes.append(sentence)
            has_data_to_process = False
            print(codes)
            print(items_to_process.qsize())
            print(image.size())
            print("waiting for threads")
            for t in threads:
                t.join()
            print("done reassembling images")
            for t in threads:
                t.shutdown = True
                t.join()
            bad_value = False
            for pi in processed_items:
                if isinstance(pi, str) and pi == "failed":
                    bad_value = True
            if bad_value == True:
                print("failed conversion,skipping batch")
                continue
            output_tensor = torch.FloatTensor(len(processed_items), 3,
                                              images.size()[2],
                                              images.size()[3])
            for ii, image_tensor in enumerate(processed_items):
                output_tensor[ii] = processed_items[ii]
            output_var = to_var(output_tensor, False)
            target_var = to_var(images, False)
            #loss = criterion(output_var,target_var)
            print("loss")
            print(loss)

            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
                    % (epoch, args.num_epochs, i, total_step, loss.data[0],
                       np.exp(loss.data[0])))

            # Save the models
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-%d-%d.pkl' % (epoch + 1, i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(args.model_path,
                                 'encoder-%d-%d.pkl' % (epoch + 1, i + 1)))
Example #15
0
def main(args):

    if not os.path.exists(
            args.model_path
    ):  # # create model folder to keep model setting pickle files
        os.makedirs(args.model_path)

    # image preprocessing and normailzation
    transform = transforms.Compose([
        transforms.RandomCrop(args.crop_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])

    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)  # load vocabulary wrapper file

    # get data loader
    data_loader = get_loader(args.image_dir,
                             args.caption_path,
                             vocab,
                             transform,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)

    encoder = EncoderCNN(args.embed_size)  # build encoder
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers)  # build decoder

    if torch.cuda.is_available():  # load GPU
        encoder.cuda()
        decoder.cuda()

    criterion = nn.CrossEntropyLoss()  # get loss
    params = list(decoder.parameters()) + list(
        encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params,
                                 lr=args.learning_rate)  # get optimization

    # train the Models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(data_loader):

            # set mini batch dataset
            images = to_var(images, volatile=True)
            captions = to_var(captions)
            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]

            # forward and backward
            decoder.zero_grad()
            encoder.zero_grad()
            features = encoder(images)
            outputs = decoder(features, captions, lengths)
            loss = criterion(outputs, targets)
            loss.backward()

            optimizer.step()  # optimization

            # Print loss and perplexity
            if i % args.log_step == 0:
                print(
                    'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
                    % (epoch, args.num_epochs, i, total_step, loss.data[0],
                       np.exp(loss.data[0])))

            # save the models pickle file settings
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-%d-%d.pkl' % (epoch + 1, i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(args.model_path,
                                 'encoder-%d-%d.pkl' % (epoch + 1, i + 1)))
Example #16
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Image preprocessing, normalization for the pretrained resnet
    transform = transforms.Compose([
        transforms.RandomCrop(args.crop_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])

    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    # Build data loader
    data_loader = get_loader(args.image_dir,
                             args.caption_path,
                             vocab,
                             transform,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)

    val_loader = get_loader(args.val_image_dir,
                            args.val_caption_path,
                            vocab,
                            transform,
                            args.batch_size,
                            shuffle=False,
                            num_workers=args.num_workers)

    # Build the models
    encoder = EncoderCNN(args.embed_size).to(device)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers).to(device)

    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(
        encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the models
    total_step = len(data_loader)
    train_loss_arr = []
    val_loss_arr = []
    train_bleu_arr = []
    val_bleu_arr = []
    for epoch in range(1, args.num_epochs + 1, 1):
        iteration_loss = []
        iteration_bleu = []
        for i, (images, captions, lengths) in enumerate(data_loader):

            # Set mini-batch dataset
            images = images.to(device)
            captions = captions.to(device)
            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]

            # Forward, backward and optimize
            features = encoder(images)
            outputs = decoder(features, captions, lengths)
            #print(outputs.shape, targets.shape)
            loss = criterion(outputs, targets)
            iteration_loss.append(loss.item())
            decoder.zero_grad()
            encoder.zero_grad()
            loss.backward()
            optimizer.step()

            #get BLEU score for corresponding batch
            sampled_ids = decoder.sample(features)
            sampled_ids = sampled_ids.cpu().numpy()
            bleu_score_batch = get_bleu(captions, sampled_ids, vocab)
            iteration_bleu.append(bleu_score_batch)

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Bleu: '.format(
                        epoch, args.num_epochs, i, total_step, loss.item()) +
                    str(bleu_score_batch))
                f_log = open(os.path.join(args.model_path, "log.txt"), "a+")
                f_log.write("Epoch: " + str(epoch) + "/" +
                            str(args.num_epochs) + " Step: " + str(i) + "/" +
                            str(total_step) + " loss: " + str(loss.item()) +
                            " Bleu: " + str(bleu_score_batch) + "\n")
                f_log.close()

            # Save the model checkpoints
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(args.model_path,
                                 'encoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))

        train_loss_arr.append(np.array(iteration_loss))
        train_bleu_arr.append(np.array(iteration_bleu))

        val_loss = 0
        val_steps = 0
        val_iteration_loss = []
        val_iteration_bleu = []
        for j, (images_val, captions_val,
                lengths_val) in enumerate(val_loader):

            # Set mini-batch dataset
            images_val = images_val.to(device)
            captions_val = captions_val.to(device)
            targets = pack_padded_sequence(captions_val,
                                           lengths_val,
                                           batch_first=True)[0]

            # Forward, backward and optimize
            features = encoder(images_val)
            outputs = decoder(features, captions_val, lengths_val)
            #print(outputs.shape, targets.shape)
            loss = criterion(outputs, targets).item()
            val_loss += loss
            val_iteration_loss.append(loss)
            val_steps += 1

            #get BLEU score for corresponding batch
            sampled_ids = decoder.sample(features)
            sampled_ids = sampled_ids.cpu().numpy()
            bleu_score_batch = get_bleu(captions_val, sampled_ids, vocab)
            val_iteration_bleu.append(bleu_score_batch)

        val_loss /= val_steps
        print('Epoch [{}/{}], Val Loss: {:.4f}, Bleu: '.format(
            epoch, args.num_epochs, val_loss) + str(bleu_score_batch))
        f_log = open(os.path.join(args.model_path, "log.txt"), "a+")
        f_log.write("Epoch: " + str(epoch) + "/" + str(args.num_epochs) +
                    " val loss: " + str(val_loss) + " Bleu: " +
                    str(bleu_score_batch) + "\n\n")
        f_log.close()
        val_loss_arr.append(np.array(val_iteration_loss))
        val_bleu_arr.append(np.array(val_iteration_bleu))

    np.save(os.path.join(args.model_path, "train_loss.npy"),
            np.array(train_loss_arr))
    np.save(os.path.join(args.model_path, "val_loss.npy"),
            np.array(val_loss_arr))
    np.save(os.path.join(args.model_path, "train_bleu.npy"),
            np.array(train_bleu_arr))
    np.save(os.path.join(args.model_path, "val_bleu.npy"),
            np.array(val_bleu_arr))
Example #17
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    # Build the models
    encoder = EncoderCNN(args.embed_size).to(device)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers).to(device)

    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.linear.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    obj = data_loader.MsvdDataset()
    datas = obj.getAll()
    #print(len(datas))
    os.chdir(r'E:/jupyterNotebook/our_project/')
    # Train the models
    total_step = len(datas)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(datas):

            #print(epoch,i,images.shape)
            # Set mini-batch dataset
            images = images.to(device)

            # Forward, backward and optimize
            features = encoder(images)
            features = features.cpu().detach().numpy()
            features = features.mean(axis=0)
            features = torch.from_numpy(features).view(1, -1).to(device)
            #print(features.shape)

            for j in range(1):
                #for j in range(len(captions)):
                captions[j] = captions[j].long()
                captions[j] = captions[j].view(1, -1).to(device)
                targets = pack_padded_sequence(captions[j],
                                               lengths[j],
                                               batch_first=True)[0]

                outputs = decoder(features, captions[j], lengths[j])
                #print(targets.shape)
                #print(outputs.shape)
                loss = criterion(outputs, targets)
                decoder.zero_grad()
                #encoder.zero_grad()
                loss.backward()
                optimizer.step()

            print(
                'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                .format(epoch + 1, args.num_epochs, i, total_step, loss.item(),
                        np.exp(loss.item())))

            #print(os.path)
            if (i + 1) % 25 == 0:  #args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join('E:\jupyterNotebook\our_project\models',
                                 'decoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join('E:\jupyterNotebook\our_project\models',
                                 'encoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))
Example #18
0
def main(args):
    train_losses = []
    train_acc = []

    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Image preprocessing, normalization for the pretrained resnet
    transform = transforms.Compose([
        transforms.RandomCrop(args.crop_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])

    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)
    # Build data loader
    data_loader = get_loader(args.image_dir,
                             args.caption_path,
                             vocab,
                             transform,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)

    # Build the models
    encoder = EncoderCNN(args.embed_size).to(device)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers).to(device)

    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(
        encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        losses = []
        accuracy = 0.0

        for i, (images, captions, lengths) in enumerate(data_loader):

            # Set mini-batch dataset
            images = images.to(device)
            captions = captions.to(device)
            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]

            # Forward, backward and optimize
            features = encoder(images)
            outputs = decoder(features, captions, lengths)
            loss = criterion(outputs, targets)

            # record accuracy and loss
            losses.append(loss.item())
            topv, topi = outputs.topk(1, dim=1)
            targets = targets.unsqueeze(-1)
            accuracy += float((topi == targets).sum()) / targets.shape[0]
            # update params
            decoder.zero_grad()
            encoder.zero_grad()
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}, Accuracy: {:.4f}'
                    .format(epoch + 1, args.num_epochs, i, total_step,
                            loss.item(), np.exp(loss.item()),
                            accuracy / float(i + 1)))
                with open('my_train_loss_t4_resnext.txt', 'a') as fi:
                    fi.write('\n' +
                             'epoch = {}, i = {}, tr_loss = {}, acc = {}'.
                             format(epoch + 1, i + 1, loss.item(), accuracy /
                                    float(i + 1)))

            # Save the model checkpoints
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(
                        args.model_path,
                        'my-decoder-{}-{}-t4-resnext.ckpt'.format(
                            epoch + 1, i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(
                        args.model_path,
                        'my-encoder-{}-{}-t4-resnext.ckpt'.format(
                            epoch + 1, i + 1)))

        train_losses.append(sum(losses) / total_step)
        train_acc.append(accuracy / total_step)

        # save losses over epoch
        f = open("train_loss.txt", "a")
        f.write(str(train_losses))
        f.close()

        # save accuracies over epoch
        f = open("train_acc.txt", "a")
        f.write(str(train_acc))
        f.close()
Example #19
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)
    
    # Image preprocessing
    # For normalization, see https://github.com/pytorch/vision#models
    transform = transforms.Compose([ 
        transforms.RandomCrop(args.crop_size),
        transforms.RandomHorizontalFlip(), 
        transforms.ToTensor(), 
        transforms.Normalize((0.485, 0.456, 0.406), 
                             (0.229, 0.224, 0.225))])
    
    # Load vocabulary wrapper.
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)
    
    # Build data loader
    data_loader = get_loader(args.image_dir, args.caption_path, vocab, 
                             transform, args.batch_size,
                             shuffle=True, num_workers=args.num_workers) 

    # Build the models
    encoder = EncoderCNN(args.embed_size)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, 
                         len(vocab), args.num_layers)
    
    if torch.cuda.is_available():
        encoder.cuda()
        decoder.cuda()

    # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)
    
    # Train the Models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(data_loader):
            
            # Set mini-batch dataset
            images = to_var(images, volatile=True)
            captions = to_var(captions)
            targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
            
            # Forward, Backward and Optimize
            decoder.zero_grad()
            encoder.zero_grad()
            features = encoder(images)
            outputs = decoder(features, captions, lengths)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
                      %(epoch, args.num_epochs, i, total_step, 
                        loss.data[0], np.exp(loss.data[0]))) 
                
            # Save the models
            if (i+1) % args.save_step == 0:
                torch.save(decoder.state_dict(), 
                           os.path.join(args.model_path, 
                                        'decoder-%d-%d.pkl' %(epoch+1, i+1)))
                torch.save(encoder.state_dict(), 
                           os.path.join(args.model_path, 
                                        'encoder-%d-%d.pkl' %(epoch+1, i+1)))
Example #20
0
def main(args):

    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)

    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Image preprocessing
    # For normalization, see https://github.com/pytorch/vision#models
    transform = transforms.Compose([
        # transforms.RandomCrop(args.crop_size),
        # transforms.RandomHorizontalFlip(),
        transforms.Scale(args.crop_size),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])

    # Load vocabulary wrapper.
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    # Build data loader
    data_loader = get_loader(args.image_dir,
                             args.caption_path,
                             vocab,
                             args.MSCOCO_result,
                             args.coco_detection_result,
                             transform,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers,
                             dummy_object=99,
                             yolo=False)

    # Build the models
    encoder = EncoderCNN(args.embed_size)
    # the layout encoder hidden state size must be the same with decoder input size
    layout_encoder = LayoutEncoder(args.layout_embed_size, args.embed_size,
                                   100, args.num_layers)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers)

    if torch.cuda.is_available():
        encoder.cuda()
        layout_encoder.cuda()
        decoder.cuda()

    # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(layout_encoder.parameters()) + list(decoder.parameters()) + \
      list(encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the Models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths, label_seqs, location_seqs,
                visual_seqs, layout_lengths) in enumerate(data_loader):
            # Set mini-batch dataset
            images = to_var(images)
            captions = to_var(captions)
            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]

            # Forward, Backward and Optimize
            # decoder.zero_grad()
            # layout_encoder.zero_grad()
            # encoder.zero_grad()

            # Modify This part for using visual features or not

            # features = encoder(images)
            layout_encoding = layout_encoder(label_seqs, location_seqs,
                                             layout_lengths)
            # comb_features = features + layout_encoding
            comb_features = layout_encoding

            outputs = decoder(comb_features, captions, lengths)

            loss = criterion(outputs, targets)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
                    % (epoch, args.num_epochs, i, total_step, loss.data[0],
                       np.exp(loss.data[0])))

                # Save the models
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-%d-%d.pkl' % (epoch + 1, i + 1)))

                torch.save(
                    layout_encoder.state_dict(),
                    os.path.join(
                        args.model_path,
                        'layout_encoding-%d-%d.pkl' % (epoch + 1, i + 1)))
Example #21
0
class ImageDescriptor():
    def __init__(self, args, encoder):
        assert(args.mode == 'train' or 'val' or 'test')
        self.__args = args
        self.__mode = args.mode
        self.__attention_mechanism = args.attention
        self.__stats_manager = ImageDescriptorStatsManager()
        self.__validate_when_training = args.validate_when_training
        self.__history = []

        if not os.path.exists(args.model_dir):
            os.makedirs(args.model_dir)

        self.__config_path = os.path.join(
            args.model_dir, f'config-{args.encoder}{args.encoder_ver}.txt')

        # Device configuration
        self.__device = torch.device(
            'cuda' if torch.cuda.is_available() else 'cpu')

        # training set vocab
        with open(args.vocab_path, 'rb') as f:
            self.__vocab = pickle.load(f)

        # validation set vocab
        with open(args.vocab_path.replace('train', 'val'), 'rb') as f:
            self.__vocab_val = pickle.load(f)

        # coco dataset
        self.__coco_train = CocoDataset(
            args.image_dir, args.caption_path, self.__vocab, args.crop_size)
        self.__coco_val = CocoDataset(
            args.image_dir, args.caption_path.replace('train', 'val'), self.__vocab_val, args.crop_size)

        # data loader
        self.__train_loader = torch.utils.data.DataLoader(dataset=self.__coco_train,
                                                          batch_size=args.batch_size,
                                                          shuffle=True,
                                                          num_workers=args.num_workers,
                                                          collate_fn=collate_fn)
        self.__val_loader = torch.utils.data.DataLoader(dataset=self.__coco_val,
                                                        batch_size=args.batch_size,
                                                        shuffle=False,
                                                        num_workers=args.num_workers,
                                                        collate_fn=collate_fn)
        # Build the models
        self.__encoder = encoder.to(self.__device)
        self.__decoder = DecoderRNN(args.embed_size, args.hidden_size,
                                    len(self.__vocab), args.num_layers, attention_mechanism=self.__attention_mechanism).to(self.__device)

        # Loss and optimizer
        self.__criterion = nn.CrossEntropyLoss()
        self.__params = list(self.__decoder.parameters(
        )) + list(self.__encoder.linear.parameters()) + list(self.__encoder.bn.parameters())
        self.__optimizer = torch.optim.Adam(
            self.__params, lr=args.learning_rate)

        # Load checkpoint and check compatibility
        if os.path.isfile(self.__config_path):
            with open(self.__config_path, 'r') as f:
                content = f.read()[:-1]
            if content != repr(self):
                # save the error info
                with open('config.err', 'w') as f:
                    print(f'f.read():\n{content}', file=f)
                    print(f'repr(self):\n{repr(self)}', file=f)
                raise ValueError(
                    "Cannot create this experiment: "
                    "I found a checkpoint conflicting with the current setting.")
            self.load(file_name=args.checkpoint)
        else:
            self.save()

    def setting(self):
        '''
        Return the setting of the experiment.
        '''
        return {'Net': (self.__encoder, self.__decoder),
                'Optimizer': self.__optimizer,
                'BatchSize': self.__args.batch_size}

    @property
    def epoch(self):
        return len(self.__history)

    @property
    def history(self):
        return self.__history

    # @property
    # def mode(self):
    #     return self.__args.mode

    # @mode.setter
    # def mode(self, m):
    #     self.__args.mode = m

    def __repr__(self):
        '''
        Pretty printer showing the setting of the experiment. This is what
        is displayed when doing `print(experiment). This is also what is
        saved in the `config.txt file.
        '''
        string = ''
        for key, val in self.setting().items():
            string += '{}({})\n'.format(key, val)
        return string

    def state_dict(self):
        '''
        Returns the current state of the model.
        '''
        return {'Net': (self.__encoder.state_dict(), self.__decoder.state_dict()),
                'Optimizer': self.__optimizer.state_dict(),
                'History': self.__history}

    def save(self):
        '''
        Saves the model on disk, i.e, create/update the last checkpoint.
        '''
        file_name = os.path.join(
            self.__args.model_dir, '{}{}-epoch-{}.ckpt'.format(self.__args.encoder, self.__args.encoder_ver, self.epoch))
        torch.save(self.state_dict(), file_name)
        with open(self.__config_path, 'w') as f:
            print(self, file=f)

        print(f'Save to {file_name}.')

    def load(self, file_name=None):
        '''
        Loads the model from the last checkpoint saved on disk.

        Args:
            file_name (str): path to the checkpoint file
        '''
        if not file_name:
            # find the latest .ckpt file
            try:
                file_name = max(
                    glob.iglob(os.path.join(self.__args.model_dir, '*.ckpt')), key=os.path.getctime)
                print(f'Load from {file_name}.')
            except:
                raise FileNotFoundError(
                    'No checkpoint file in the model directory.')
        else:
            file_name = os.path.join(self.__args.model_dir, file_name)
            print(f'Load from {file_name}.')

        try:
            checkpoint = torch.load(file_name, map_location=self.__device)
        except:
            raise FileNotFoundError(
                'Please check --checkpoint, the name of the file')

        self.load_state_dict(checkpoint)
        del checkpoint

    def load_state_dict(self, checkpoint):
        '''
        Loads the model from the input checkpoint.

        Args:
            checkpoint: an object saved with torch.save() from a file.
        '''
        self.__encoder.load_state_dict(checkpoint['Net'][0])
        self.__decoder.load_state_dict(checkpoint['Net'][1])
        self.__optimizer.load_state_dict(checkpoint['Optimizer'])
        self.__history = checkpoint['History']

        # The following loops are used to fix a bug that was
        # discussed here: https://github.com/pytorch/pytorch/issues/2830
        # (it is supposed to be fixed in recent PyTorch version)
        for state in self.__optimizer.state.values():
            for k, v in state.items():
                if isinstance(v, torch.Tensor):
                    state[k] = v.to(self.__device)

    def train(self, plot_loss=None):
        '''
        Train the network using backpropagation based
        on the optimizer and the training set.

        Args:
            plot_loss (func, optional): if not None, should be a function taking a
                single argument being an experiment (meant to be `self`).
                Similar to a visitor pattern, this function is meant to inspect
                the current state of the experiment and display/plot/save
                statistics. For example, if the experiment is run from a
                Jupyter notebook, `plot` can be used to display the evolution
                of the loss with `matplotlib`. If the experiment is run on a
                server without display, `plot` can be used to show statistics
                on `stdout` or save statistics in a log file. (default: None)
        '''
        self.__encoder.train()
        self.__decoder.train()
        self.__stats_manager.init()
        total_step = len(self.__train_loader)
        start_epoch = self.epoch
        print("Start/Continue training from epoch {}".format(start_epoch))

        if plot_loss is not None:
            plot_loss(self)

        for epoch in range(start_epoch, self.__args.num_epochs):
            t_start = time.time()
            self.__stats_manager.init()
            for i, (images, captions, lengths) in enumerate(self.__train_loader):
                # Set mini-batch dataset
                if not self.__attention_mechanism:
                    images = images.to(self.__device)
                    captions = captions.to(self.__device)
                else:
                    with torch.no_grad():
                        images = images.to(self.__device)
                    captions = captions.to(self.__device)

                targets = pack_padded_sequence(
                    captions, lengths, batch_first=True)[0]

                # Forward, backward and optimize
                if not self.__attention_mechanism:
                    features = self.__encoder(images)
                    outputs = self.__decoder(features, captions, lengths)
                    self.__decoder.zero_grad()
                    self.__encoder.zero_grad()
                else:
                    self.__encoder.zero_grad()
                    self.__decoder.zero_grad()
                    features, cnn_features = self.__encoder(images)
                    outputs = self.__decoder(
                        features, captions, lengths, cnn_features=cnn_features)
                loss = self.__criterion(outputs, targets)

                loss.backward()
                self.__optimizer.step()
                with torch.no_grad():
                    self.__stats_manager.accumulate(
                        loss=loss.item(), perplexity=np.exp(loss.item()))

                # Print log info each iteration
                if i % self.__args.log_step == 0:
                    print('[Training] Epoch: {}/{} | Step: {}/{} | Loss: {:.4f} | Perplexity: {:5.4f}'
                          .format(epoch+1, self.__args.num_epochs, i, total_step, loss.item(), np.exp(loss.item())))

            if not self.__validate_when_training:
                self.__history.append(self.__stats_manager.summarize())
                print("Epoch {} | Time: {:.2f}s\nTraining Loss: {:.6f} | Training Perplexity: {:.6f}".format(
                    self.epoch, time.time() - t_start, self.__history[-1]['loss'], self.__history[-1]['perplexity']))
            else:
                self.__history.append(
                    (self.__stats_manager.summarize(), self.evaluate()))
                print("Epoch {} | Time: {:.2f}s\nTraining Loss: {:.6f} | Training Perplexity: {:.6f}\nEvaluation Loss: {:.6f} | Evaluation Perplexity: {:.6f}".format(
                    self.epoch, time.time() - t_start,
                    self.__history[-1][0]['loss'], self.__history[-1][0]['perplexity'],
                    self.__history[-1][1]['loss'], self.__history[-1][1]['perplexity']))

            # Save the model checkpoints
            self.save()

            if plot_loss is not None:
                plot_loss(self)

        print("Finish training for {} epochs".format(self.__args.num_epochs))

    def evaluate(self, print_info=False):
        '''
        Evaluates the experiment, i.e., forward propagates the validation set
        through the network and returns the statistics computed by the stats
        manager.

        Args:
            print_info (bool): print the results of loss and perplexity
        '''
        self.__stats_manager.init()
        self.__encoder.eval()
        self.__decoder.eval()
        total_step = len(self.__val_loader)
        with torch.no_grad():
            for i, (images, captions, lengths) in enumerate(self.__val_loader):
                images = images.to(self.__device)
                captions = captions.to(self.__device)
                targets = pack_padded_sequence(
                    captions, lengths, batch_first=True)[0]

                # Forward
                if not self.__attention_mechanism:
                    features = self.__encoder(images)
                    outputs = self.__decoder(features, captions, lengths)
                else:
                    features, cnn_features = self.__encoder(images)
                    outputs = self.__decoder(
                        features, captions, lengths, cnn_features=cnn_features)
                loss = self.__criterion(outputs, targets)
                self.__stats_manager.accumulate(
                    loss=loss.item(), perplexity=np.exp(loss.item()))
                if i % self.__args.log_step == 0:
                    print('[Validation] Step: {}/{} | Loss: {:.4f} | Perplexity: {:5.4f}'
                          .format(i, total_step, loss.item(), np.exp(loss.item())))

        summarize = self.__stats_manager.summarize()
        if print_info:
            print(
                f'[Validation] Average loss for this epoch is {summarize["loss"]:.6f}')
            print(
                f'[Validation] Average perplexity for this epoch is {summarize["perplexity"]:.6f}\n')
        self.__encoder.train()
        self.__decoder.train()
        return summarize

    def mode(self, mode=None):
        '''
        Get the current mode or change mode.

        Args:
            mode (str): 'train' or 'eval' mode
        '''
        if not mode:
            return self.__mode
        self.__mode = mode

    def __load_image(self, image):
        '''
        Load image at `image_path` for evaluation.

        Args:
            image (PIL Image): image
        '''
        image = image.resize([224, 224], Image.LANCZOS)

        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406),
                                 (0.229, 0.224, 0.225))])
        image = transform(image).unsqueeze(0)

        return image

    def test(self, image_path=None, plot=False):
        '''
        Evaluate the model by generating the caption for the
        corresponding image at `image_path`.

        Note: This function will not provide BLEU socre.

        Args:
            image_path (str): file path of the evaluation image
            plot (bool): plot or not
        '''
        self.__encoder.eval()
        self.__decoder.eval()

        with torch.no_grad():
            if not image_path:
                image_path = self.__args.image_path

            image = Image.open(image_path)

            # only process with RGB image
            if np.array(image).ndim == 3:
                img = self.__load_image(image).to(self.__device)

                # generate an caption
                if not self.__attention_mechanism:
                    feature = self.__encoder(img)
                    sampled_ids = self.__decoder.sample(feature)
                    sampled_ids = sampled_ids[0].cpu().numpy()
                else:
                    feature, cnn_features = self.__encoder(img)
                    sampled_ids = self.__decoder.sample(feature, cnn_features)
                    sampled_ids = sampled_ids.cpu().data.numpy()

                # Convert word_ids to words
                sampled_caption = []
                for word_id in sampled_ids:
                    word = self.__vocab.idx2word[word_id]
                    sampled_caption.append(word)
                    if word == '<end>':
                        break
                sentence = ' '.join(sampled_caption[1:-1])

                # Print out the image and the generated caption
                print(sentence)

                if plot:
                    image = Image.open(image_path)
                    plt.imshow(np.asarray(image))
            else:
                print('Not support for non-RGB image.')
        self.__encoder.train()
        self.__decoder.train()

    def coco_image(self, idx, ds='val'):
        '''
        Access iamge_id (which is part of the file name) 
        and corresponding image caption of index `idx` in COCO dataset.

        Note: For jupyter notebook

        Args:
            idx (int): index of COCO dataset

        Returns:
            (dict)
        '''
        assert(ds == 'train' or 'val')

        if ds == 'train':
            ann_id = self.__coco_train.ids[idx]
            return self.__coco_train.coco.anns[ann_id]
        else:
            ann_id = self.__coco_val.ids[idx]
            return self.__coco_val.coco.anns[ann_id]

    @property
    def len_of_train_set(self):
        '''
        Number of training 
        '''
        return len(self.__coco_train)

    @property
    def len_of_val_set(self):
        return len(self.__coco_val)

    def bleu_score(self, idx, ds='val', plot=False, show_caption=False):
        '''
        Evaluate the BLEU score for index `idx` in COCO dataset.

        Note: For jupyter notebook

        Args:
            idx (int): index
            ds (str): training or validation dataset
            plot (bool): plot the image or not

        Returns:
            score (float): bleu score
        '''
        assert(ds == 'train' or 'val')
        self.__encoder.eval()
        self.__decoder.eval()

        with torch.no_grad():
            try:
                if ds == 'train':
                    ann_id = self.__coco_train.ids[idx]
                    coco_ann = self.__coco_train.coco.anns[ann_id]
                else:
                    ann_id = self.__coco_val.ids[idx]
                    coco_ann = self.__coco_val.coco.anns[ann_id]
            except:
                raise IndexError('Invalid index')

            image_id = coco_ann['image_id']

            image_id = str(image_id)
            if len(image_id) != 6:
                for _ in range(6 - len(image_id)):
                    image_id = '0' + image_id

            image_path = f'{self.__args.image_dir}/COCO_train2014_000000{image_id}.jpg'
            if ds == 'val':
                image_path = image_path.replace('train', 'val')

            coco_list = coco_ann['caption'].split()

            image = Image.open(image_path)

            if np.array(image).ndim == 3:
                img = self.__load_image(image).to(self.__device)

                # generate an caption
                if not self.__attention_mechanism:
                    feature = self.__encoder(img)
                    sampled_ids = self.__decoder.sample(feature)
                    sampled_ids = sampled_ids[0].cpu().numpy()
                else:
                    feature, cnn_features = self.__encoder(img)
                    sampled_ids = self.__decoder.sample(feature, cnn_features)
                    sampled_ids = sampled_ids.cpu().data.numpy()

                # Convert word_ids to words
                sampled_caption = []
                for word_id in sampled_ids:
                    word = self.__vocab.idx2word[word_id]
                    sampled_caption.append(word)
                    if word == '<end>':
                        break

                # strip punctuations and spacing
                sampled_list = [c for c in sampled_caption[1:-1]
                                if c not in punctuation]

                score = sentence_bleu(coco_list, sampled_list,
                                      smoothing_function=SmoothingFunction().method4)

                if plot:
                    plt.figure()
                    image = Image.open(image_path)
                    plt.imshow(np.asarray(image))
                    plt.title(f'score: {score}')
                    plt.xlabel(f'file: {image_path}')

                # Print out the generated caption
                if show_caption:
                    print(f'Sampled caption:\n{sampled_list}')
                    print(f'COCO caption:\n{coco_list}')

            else:
                print('Not support for non-RGB image.')
                return

        return score
Example #22
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    # Build data loader
    data_loader = get_loader(args.image_dir,
                             args.caption_path,
                             vocab,
                             args.dictionary,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)

    # Build the models
    #encoder = EncoderCNN(args.embed_size).to(device)
    dictionary = pd.read_csv(args.dictionary,
                             header=0,
                             encoding='unicode_escape',
                             error_bad_lines=False)
    dictionary = list(dictionary['keys'])

    decoder = DecoderRNN(len(dictionary), args.hidden_size, len(vocab),
                         args.num_layers).to(device)

    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters(
    ))  # + list(encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (array, captions, lengths) in enumerate(data_loader):

            # Set mini-batch dataset
            array = array.to(device)
            captions = captions.to(device)
            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]

            # Forward, backward and optimize
            #features = encoder(images)
            outputs = decoder(array, captions, lengths)
            loss = criterion(outputs, targets)
            decoder.zero_grad()
            #encoder.zero_grad()
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                    .format(epoch, args.num_epochs, i, total_step, loss.item(),
                            np.exp(loss.item())))

            # Save the model checkpoints
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Image preprocessing
    # For normalization, see https://github.com/pytorch/vision#models
    # transform = transforms.Compose([
    #     transforms.RandomCrop(args.crop_size),
    #     transforms.RandomHorizontalFlip(),
    #     transforms.ToTensor(),
    #     transforms.Normalize((0.485, 0.456, 0.406),
    #                          (0.229, 0.224, 0.225))])

    transform = transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])

    # Load vocabulary wrapper.
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    # data_loader = get_loader(args.image_dir, args.caption_path, vocab,
    #                          transform, args.batch_size,
    #                          shuffle=True, num_workers=args.num_workers)
    sasr_data_loader = SASR_Data_Loader(vocab, transform)
    sasr_data_loader.load_data(args.data_file, args.init_flag)
    frogger_data_loader = sasr_data_loader.data_loader(
        args.batch_size, transform, shuffle=True, num_workers=args.num_workers)
    # Build the models
    encoder = EncoderCNN(args.embed_size)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers)

    if torch.cuda.is_available():
        encoder.cuda()
        decoder.cuda()

    # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(
        encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    total_step = len(frogger_data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(frogger_data_loader):
            images = to_var(images, volatile=True)
            if (list(images.size())[0] != 1):
                captions = to_var(captions)
                # print(list(images.size())[0])
                # print(captions)
                # exit(0)

                targets = pack_padded_sequence(captions,
                                               lengths,
                                               batch_first=True)[0]
                decoder.zero_grad()
                encoder.zero_grad()
                features = encoder(images)
                outputs = decoder(features, captions, lengths)
                loss = criterion(outputs, targets)
                loss.backward()
                optimizer.step()

                # Print log info
                if i % args.log_step == 0:
                    print(
                        'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
                        % (epoch, args.num_epochs, i, total_step, loss.data[0],
                           np.exp(loss.data[0])))

                # Save the models
                if (i + 1) % args.save_step == 0:
                    torch.save(
                        decoder.state_dict(),
                        os.path.join(args.model_path,
                                     'decoder-%d-%d.pkl' % (epoch + 1, i + 1)))
                    torch.save(
                        encoder.state_dict(),
                        os.path.join(args.model_path,
                                     'encoder-%d-%d.pkl' % (epoch + 1, i + 1)))
Example #24
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Load vocabulary wrapper.
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    # Image preprocessing
    # For normalization, see https://github.com/pytorch/vision#models
    transform = transforms.Compose([
        transforms.RandomCrop(args.crop_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])
    val_loader = get_loader('./data/val_resized2014/',
                            './data/annotations/captions_val2014.json', vocab,
                            transform, 1, False, 1)

    start_epoch = 0

    encoder_state = args.encoder
    decoder_state = args.decoder

    # Build the models
    encoder = EncoderCNN(args.embed_size)
    if not args.train_encoder:
        encoder.eval()
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers)

    if args.restart:
        encoder_state, decoder_state = 'new', 'new'

    if encoder_state == '': encoder_state = 'new'
    if decoder_state == '': decoder_state = 'new'

    if decoder_state != 'new':
        start_epoch = int(decoder_state.split('-')[1])

    print("Using encoder: {}".format(encoder_state))
    print("Using decoder: {}".format(decoder_state))

    # Build data loader
    data_loader = get_loader(args.image_dir,
                             args.caption_path,
                             vocab,
                             transform,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)
    """ Make logfile and log output """
    with open(args.model_path + args.logfile, 'a+') as f:
        f.write("Training on vanilla loss (using new model). Started {} .\n".
                format(str(datetime.now())))
        f.write("Using encoder: new\nUsing decoder: new\n\n")

    if torch.cuda.is_available():
        encoder.cuda()
        decoder.cuda()

    # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(
        encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    batch_loss = []
    batch_acc = []

    # Train the Models
    total_step = len(data_loader)
    for epoch in range(start_epoch, args.num_epochs):
        for i, (images, captions, lengths, _, _) in enumerate(data_loader):

            # Set mini-batch dataset
            images = to_var(images, volatile=True)
            captions = to_var(captions)
            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]

            # Forward, Backward and Optimize
            decoder.zero_grad()
            encoder.zero_grad()
            features = encoder(images)
            out = decoder(features, captions, lengths)
            loss = criterion(out, targets)
            batch_loss.append(loss.data[0])

            loss.backward()
            optimizer.step()

            # # Print log info
            # if i % args.log_step == 0:
            #     print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f, Val: %.5f, %.5f'
            #           %(epoch, args.num_epochs, i, total_step,
            #             loss.data[0], np.exp(loss.data[0]), acc, gt_acc))

            #     with open(args.model_path + args.logfile, 'a') as f:
            #         f.write('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f, Val: %.5f, %.5f\n'
            #               %(epoch, args.num_epochs, i, total_step,
            #                 loss.data[0], np.exp(loss.data[0]), acc, gt_acc))

            # Save the models
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-%d-%d.pkl' % (epoch + 1, i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(args.model_path,
                                 'encoder-%d-%d.pkl' % (epoch + 1, i + 1)))
                with open(args.model_path + 'training_loss.pkl', 'w+') as f:
                    pickle.dump(batch_loss, f)
                with open(args.model_path + 'training_val.pkl', 'w+') as f:
                    pickle.dump(batch_acc, f)
    with open(args.model_path + args.logfile, 'a') as f:
        f.write("Training finished at {} .\n\n".format(str(datetime.now())))
Example #25
0
def main(args):

    #setup tensorboard
    if args.tensorboard:
        cc = CrayonClient(hostname="localhost")
        print(cc.get_experiment_names())
        #if args.name in cc.get_experiment_names():
        try:
            cc.remove_experiment(args.name)
        except:
            print("experiment didnt exist")
        cc_server = cc.create_experiment(args.name)

    # Create model directory
    full_model_path = args.model_path + "/" + args.name
    if not os.path.exists(full_model_path):
        os.makedirs(full_model_path)
    with open(full_model_path + "/parameters.json", 'w') as f:
        f.write((json.dumps(vars(args))))

    # Image preprocessing

    transform = transforms.Compose([
        transforms.Scale(args.crop_size),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    mini_transform = transforms.Compose(
        [transforms.ToPILImage(),
         transforms.Scale(20),
         transforms.ToTensor()])

    # Load vocabulary wrapper.
    if args.vocab_path is not None:
        with open(args.vocab_path, 'rb') as f:
            vocab = pickle.load(f)
    else:
        print("building new vocab")
        vocab = build_vocab(args.image_dir, 1, None)
        with open((full_model_path + "/vocab.pkl"), 'wb') as f:
            pickle.dump(vocab, f)

    # Build data loader
    data_loader = get_loader(args.image_dir,
                             vocab,
                             transform,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)
    code_data_set = ProcessingDataset(root=args.image_dir,
                                      vocab=vocab,
                                      transform=transform)
    train_ds, val_ds = validation_split(code_data_set)
    train_loader = torch.utils.data.DataLoader(train_ds, collate_fn=collate_fn)
    test_loader = torch.utils.data.DataLoader(val_ds, collate_fn=collate_fn)
    train_size = len(train_loader)
    test_size = len(test_loader)

    # Build the models
    encoder = EncoderCNN(args.embed_size, args.train_cnn)
    print(encoder)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers)
    print(decoder)
    if torch.cuda.is_available():
        encoder.cuda()
        decoder.cuda()

    # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(
        encoder.linear.parameters()) + list(encoder.bn.parameters())
    #params = list(decoder.parameters()) #+ list(encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)
    start_time = time.time()
    add_log_entry(args.name, start_time, vars(args))

    # Train the Models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(data_loader):
            decoder.train()
            encoder.train()
            # Set mini-batch dataset
            image_ts = to_var(images, volatile=True)
            captions = to_var(captions)
            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]
            count = images.size()[0]

            # Forward, Backward and Optimize
            decoder.zero_grad()
            encoder.zero_grad()
            features = encoder(image_ts)
            outputs = decoder(features, captions, lengths)

            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            total = targets.size(0)
            max_index = outputs.max(dim=1)[1]
            #correct = (max_index == targets).sum()
            _, predicted = torch.max(outputs.data, 1)
            correct = predicted.eq(targets.data).cpu().sum()
            accuracy = 100. * correct / total

            if args.tensorboard:
                cc_server.add_scalar_value("train_loss", loss.data[0])
                cc_server.add_scalar_value("perplexity", np.exp(loss.data[0]))
                cc_server.add_scalar_value("accuracy", accuracy)

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, accuracy: %2.2f Perplexity: %5.4f'
                    % (epoch, args.num_epochs, i, total_step, loss.data[0],
                       accuracy, np.exp(loss.data[0])))

            # Save the models
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(full_model_path,
                                 'decoder-%d-%d.pkl' % (epoch + 1, i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(full_model_path,
                                 'encoder-%d-%d.pkl' % (epoch + 1, i + 1)))
            if 1 == 2 and i % int(train_size / 10) == 0:
                encoder.eval()
                #decoder.eval()
                correct = 0
                for ti, (timages, tcaptions,
                         tlengths) in enumerate(test_loader):
                    timage_ts = to_var(timages, volatile=True)
                    tcaptions = to_var(tcaptions)
                    ttargets = pack_padded_sequence(tcaptions,
                                                    tlengths,
                                                    batch_first=True)[0]
                    tfeatures = encoder(timage_ts)
                    toutputs = decoder(tfeatures, tcaptions, tlengths)
                    print(ttargets)
                    print(toutputs)
                    print(ttargets.size())
                    print(toutputs.size())
                    #correct = (ttargets.eq(toutputs[0].long())).sum()

                accuracy = 100 * correct / test_size
                print('accuracy: %.4f' % (accuracy))
                if args.tensorboard:
                    cc_server.add_scalar_value("accuracy", accuracy)

    torch.save(
        decoder.state_dict(),
        os.path.join(full_model_path,
                     'decoder-%d-%d.pkl' % (epoch + 1, i + 1)))
    torch.save(
        encoder.state_dict(),
        os.path.join(full_model_path,
                     'encoder-%d-%d.pkl' % (epoch + 1, i + 1)))
    end_time = time.time()
    print("finished training, runtime: %d", [(end_time - start_time)])
def main():
    # Configuration for hyper-parameters
    config = Config()
    
    # Image preprocessing
    transform = config.train_transform
    
    # Load vocabulary wrapper
    with open(os.path.join(config.vocab_path, 'vocab.pkl'), 'rb') as f:
        vocab = pickle.load(f)

    # Build data loader
    image_path = os.path.join(config.image_path, 'train2014')
    json_path = os.path.join(config.caption_path, 'captions_train2014.json')
    train_loader = get_data_loader(image_path, json_path, vocab, 
                                   transform, config.batch_size,
                                   shuffle=True, num_workers=config.num_threads) 
    total_step = len(train_loader)

    # Build Models
    teachercnn = EncoderCNN(config.embed_size)
    teachercnn.eval()
    studentcnn = StudentCNN_Model1(config.embed_size)
    #Load the best teacher model
    teachercnn.load_state_dict(torch.load(os.path.join('../TrainedModels/TeacherCNN', config.trained_encoder))) 
    studentlstm = DecoderRNN(config.embed_size, config.hidden_size/2, 
                         len(vocab), config.num_layers/2)

    if torch.cuda.is_available():
        teachercnn.cuda()
	studentcnn.cuda()
        studentlstm.cuda()

    # Loss and Optimizer
    criterion_lstm = nn.CrossEntropyLoss()
    criterion_cnn = nn.MSELoss()
    params = list(studentlstm.parameters()) + list(studentcnn.parameters())
    optimizer_lstm = torch.optim.Adam(params, lr=config.learning_rate)    
    optimizer_cnn = torch.optim.Adam(studentcnn.parameters(), lr=config.cnn_learningrate)    
    
    print('entering in to training loop')    
    # Train the Models
	
    for epoch in range(config.num_epochs):
        for i, (images, captions, lengths, img_ids) in enumerate(train_loader):
	    images = Variable(images)
            captions = Variable(captions)
            if torch.cuda.is_available():
                images = images.cuda()
                captions = captions.cuda()
            targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
            # Forward, Backward and Optimize
	    optimizer_lstm.zero_grad()
	    optimizer_cnn.zero_grad()
            features_tr = teachercnn(images)
	    features_st = studentcnn(images)
            outputs = studentlstm(features_st, captions, lengths)
            loss = criterion(features_st, features_tr.detach()) + criterion_lstm(outputs, targets)
            loss.backward()
            optimizer_cnn.step()
            optimizer_lstm.step()
     
           # Print log info
            if i % config.log_step == 0:
                print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
                      %(epoch, config.num_epochs, i, total_step, 
                        loss.data[0], np.exp(loss.data[0]))) 
                
            # Save the Model
            if (i+1) % config.save_step == 0:
                torch.save(studentlstm.state_dict(), 
                           os.path.join(config.student_lstm_path, 
                                        'decoder-%d-%d.pkl' %(epoch+1, i+1)))
		torch.save(studentcnn.state_dict(), 
                           os.path.join(config.student_cnn_path, 
                                        'encoder-%d-%d.pkl' %(epoch+1, i+1)))
Example #27
0
        # Print training statistics to file.
        f.write(stats + '\n')
        f.flush()

        # Print training statistics (on different line).
        if i_step % print_every == 0:
            print('\r' + stats)
        epoch_loss += loss.item()
    epoch_loss /= total_step

    # Save the weights.
    if save_every == -1:
        # Only save the best one so far!
        if epoch_loss <= smallest_loss:
            torch.save(
                decoder.state_dict(),
                os.path.join(
                    './models',
                    "{:02d}-decoder-{:.4f}.pkl".format(epoch, epoch_loss)))
            torch.save(
                encoder.state_dict(),
                os.path.join(
                    './models',
                    "{:02d}-encoder-{:.4f}.pkl".format(epoch, epoch_loss)))
            smallest_loss = epoch_loss
    elif epoch % save_every == 0:
        torch.save(
            decoder.state_dict(),
            os.path.join('./models',
                         "{:02d}-decoder-{:.4f}.pkl".format(epoch,
                                                            epoch_loss)))
Example #28
0
        # Calculate the batch loss.
        loss = criterion(outputs.view(-1, vocab_size), captions.view(-1))
        
        # Backward pass.
        loss.backward()
        
        # Update the parameters in the optimizer.
        optimizer.step()
            
        # Get training statistics.
        stats = 'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f' % (epoch, args.num_epochs, i_step, total_step, loss.item(), np.exp(loss.item()))
        
        # Log the loss to Azure ML
        run.log('loss', loss.item())
        run.log('perplexity', np.exp(loss.item()))
        run.log('stats', stats)

        # Print training statistics (on same line).
        print('\r' + stats, end="")
        sys.stdout.flush()
        
        
        # Print training statistics (on different line).
        if i_step % args.print_every == 0:
            print('\r' + stats)
        
    # Save the weights.
    if epoch % args.save_every == 0:
        torch.save(decoder.state_dict(), os.path.join('./models', 'decoder-%d.pkl' % epoch))
        torch.save(encoder.state_dict(), os.path.join('./models', 'encoder-%d.pkl' % epoch))
Example #29
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Image preprocessing
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.033, 0.032, 0.033), (0.027, 0.027, 0.027))
    ])

    # Build vocab
    vocab = build_vocab(args.root_path, threshold=0)
    vocab_path = args.vocab_path
    with open(vocab_path, 'wb') as f:
        pickle.dump(vocab, f)
    len_vocab = vocab.idx
    print(vocab.idx2word)

    # Build data loader
    data_loader = get_loader(args.root_path,
                             vocab,
                             transform,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)

    # Build the models
    encoder = ResNet(ResidualBlock, [3, 3, 3], args.embed_size)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers)

    #Build atten models
    if torch.cuda.is_available():
        encoder.cuda(1)
        decoder.cuda(1)

    # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the Models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(data_loader):

            # make one hot
            # cap_ = torch.unsqueeze(captions,2)
            # one_hot_ = torch.FloatTensor(captions.size(0),captions.size(1),len_vocab).zero_()
            # one_hot_caption = one_hot_.scatter_(2, cap_, 1)

            # Set mini-batch dataset
            images = to_var(images)
            captions = to_var(captions)
            #captions_ = to_var(one_hot_caption)

            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]
            # Forward, Backward and Optimize
            optimizer.zero_grad()
            features = encoder(images)
            outputs = decoder(features, captions, lengths)

            captions = captions.view(-1)
            outputs = outputs.view(-1, len_vocab)

            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            #print(targets)
            #print(outputs)

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
                    % (epoch, args.num_epochs, i, total_step, loss.data[0],
                       np.exp(loss.data[0])))

                #test set accuracy
                #print(outputs.max(1)[1])
                outputs_np = outputs.max(1)[1].cpu().data.numpy()
                targets_np = targets.cpu().data.numpy()

                print(outputs_np)
                print(targets_np)

                location_match = 0
                size_match = 0
                shape_match = 0
                exact_match = 0
                for i in range(len(targets_np)):
                    if outputs_np[i] == targets_np[i]:
                        exact_match += 1
                    if i >= args.batch_size and i < args.batch_size * 2 and outputs_np[
                            i] == targets_np[i]:
                        shape_match += 1
                    elif i >= args.batch_size * 2 and i < args.batch_size * 3 and outputs_np[
                            i] == targets_np[i]:
                        location_match += 1
                    elif i >= args.batch_size * 3 and i < args.batch_size * 4 and outputs_np[
                            i] == targets_np[i]:
                        size_match += 1

                print(
                    'location match : %.4f, shape match : %.4f, exact_match: %.4f'
                    % (location_match / (args.batch_size), shape_match /
                       args.batch_size, exact_match / len(targets_np)))

            # Save the models
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-%d-%d.pkl' % (epoch + 1, i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(args.model_path,
                                 'encoder-%d-%d.pkl' % (epoch + 1, i + 1)))
Example #30
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Image preprocessing, normalization for the pretrained resnet
    transform = transforms.Compose([
        transforms.RandomCrop(args.crop_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])

    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    # Build data loader
    data_loader = get_loader(args.image_dir,
                             args.caption_path,
                             vocab,
                             transform,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)

    # Build the models
    encoder = EncoderCNN(args.embed_size).to(device)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers).to(device)

    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(
        encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(data_loader):

            # Set mini-batch dataset
            images = images.to(device)
            captions = captions.to(device)
            targets = pack_padded_sequence(captions, lengths,
                                           batch_first=True)[0]

            # Forward, backward and optimize
            features = encoder(images)
            outputs = decoder(features, captions, lengths)
            loss = criterion(outputs, targets)
            decoder.zero_grad()
            encoder.zero_grad()
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                    .format(epoch, args.num_epochs, i, total_step, loss.item(),
                            np.exp(loss.item())))

            # Save the model checkpoints
            if (i + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(args.model_path,
                                 'decoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(args.model_path,
                                 'encoder-{}-{}.ckpt'.format(epoch + 1,
                                                             i + 1)))
Example #31
0
def main():
    # Configuration for hyper-parameters

    torch.cuda.set_device(0)
    config = Config()
    # Image preprocessing
    transform = config.train_transform
    # Load vocabulary wrapper
    with open(os.path.join(config.vocab_path, 'vocab.pkl'), 'rb') as f:
        vocab = pickle.load(f)
    # Build data loader
    train_image_path = os.path.join(config.image_path, 'train2017')
    json_path = os.path.join(config.caption_path, 'captions_train2017.json')
    train_loader = get_data_loader(train_image_path,
                                   json_path,
                                   vocab,
                                   transform,
                                   config.batch_size,
                                   shuffle=False,
                                   num_workers=config.num_threads)

    val_image_path = os.path.join(config.image_path, 'val2017')
    json_path = os.path.join(config.caption_path, 'captions_val2017.json')
    val_loader = get_data_loader(val_image_path,
                                 json_path,
                                 vocab,
                                 transform,
                                 config.batch_size,
                                 shuffle=False,
                                 num_workers=config.num_threads)

    total_step = len(train_loader)

    # Build Models
    encoder = EncoderCNN(config.embed_size)
    encoder.eval()
    decoder = DecoderRNN(config.embed_size, config.hidden_size, len(vocab),
                         config.num_layers)

    if torch.cuda.is_available():
        encoder.cuda()
        decoder.cuda()

    # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.resnet.fc.parameters())
    optimizer = torch.optim.Adam(params, lr=config.learning_rate)

    print('entering in to training loop')
    # Train the Models

    with open('train1_log.txt', 'w') as logfile:
        logfile.write('Validation Error,Training Error')
        for epoch in range(0, 25):
            for i, (images, captions, lengths,
                    img_ids) in enumerate(train_loader):
                images = Variable(images)
                captions = Variable(captions)
                if torch.cuda.is_available():
                    images = images.cuda()
                    captions = captions.cuda()
                targets = pack_padded_sequence(captions,
                                               lengths,
                                               batch_first=True)[0]
                # Forward, Backward and Optimize
                optimizer.zero_grad()
                features = encoder(images)
                outputs = decoder(features, captions, lengths)
                loss = criterion(outputs, targets)
                loss.backward()
                optimizer.step()
                # Print log info
                if i % config.log_step == 0:
                    print(
                        'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
                        % (epoch, config.num_epochs, i, total_step,
                           loss.data[0], np.exp(loss.data[0])))

                # Save the Model
                if (i + 1) % config.save_step == 0:
                    torch.save(
                        encoder.state_dict(),
                        os.path.join(config.teacher_cnn_path,
                                     'encoder-%d-%d.pkl' % (epoch + 1, i + 1)))
                    torch.save(
                        decoder.state_dict(),
                        os.path.join(config.teacher_lstm_path,
                                     'decoder-%d-%d.pkl' % (epoch + 1, i + 1)))

            print('Just Completed an Epoch, Initite Validation Error Test')
            avgvalloss = 0
            for j, (images, captions, lengths,
                    img_ids) in enumerate(val_loader):
                images = Variable(images)
                captions = Variable(captions)
                if torch.cuda.is_available():
                    images = images.cuda()
                    captions = captions.cuda()
                targets = pack_padded_sequence(captions,
                                               lengths,
                                               batch_first=True)[0]
                optimizer.zero_grad()
                features = encoder(images)
                outputs = decoder(features, captions, lengths)
                valloss = criterion(outputs, targets)
                if j == 0:
                    avgvalloss = valloss.data[0]
                avgvalloss = (avgvalloss + valloss.data[0]) / 2
                if ((j + 1) % 1000 == 0):
                    print('Average Validation Loss: %.4f' % (avgvalloss))
                    logfile.write(
                        str(avgvalloss) + ',' + str(loss.data[0]) + str('\n'))
                    break
Example #32
0
        # Print training statistics (on same line).
        print('\r' + stats, end="")
        sys.stdout.flush()

        # Print training statistics to file.
        f.write(stats + '\n')
        f.flush()

        # Print training statistics (on different line).
        if i_step % print_every == 0:
            print('\r' + stats)

    # Save the weights.
    if epoch % save_every == 0:
        torch.save(decoder.state_dict(),
                   os.path.join('./models', 'decoder-%d.pkl' % epoch))
        torch.save(encoder.state_dict(),
                   os.path.join('./models', 'encoder-%d.pkl' % epoch))

# Close the training log file.
f.close()

# <a id='step3'></a>
# ## Step 3: (Optional) Validate your Model
#
# To assess potential overfitting, one approach is to assess performance on a validation set.  If you decide to do this **optional** task, you are required to first complete all of the steps in the next notebook in the sequence (**3_Inference.ipynb**); as part of that notebook, you will write and test code (specifically, the `sample` method in the `DecoderRNN` class) that uses your RNN decoder to generate captions.  That code will prove incredibly useful here.
#
# If you decide to validate your model, please do not edit the data loader in **data_loader.py**.  Instead, create a new file named **data_loader_val.py** containing the code for obtaining the data loader for the validation data.  You can access:
# - the validation images at filepath `'/opt/cocoapi/images/train2014/'`, and
# - the validation image caption annotation file at filepath `'/opt/cocoapi/annotations/captions_val2014.json'`.
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)
    
    # Image preprocessing, normalization for the pretrained resnet
    transform = transforms.Compose([ 
        transforms.RandomCrop(args.crop_size),
        transforms.RandomHorizontalFlip(), 
        transforms.ToTensor(), 
        transforms.Normalize((0.485, 0.456, 0.406), 
                             (0.229, 0.224, 0.225))])
    
    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)
    
    # Build data loader
    data_loader = get_loader(args.image_dir, args.caption_path, vocab, 
                             transform, args.batch_size,
                             shuffle=True, num_workers=args.num_workers) 

    # Build the models
    encoder = EncoderCNN(args.embed_size).to(device)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers).to(device)
    
    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)
    
    # Train the models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(data_loader):
            
            # Set mini-batch dataset
            images = images.to(device)
            captions = captions.to(device)
            targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
            
            # Forward, backward and optimize
            features = encoder(images)
            outputs = decoder(features, captions, lengths)
            loss = criterion(outputs, targets)
            decoder.zero_grad()
            encoder.zero_grad()
            loss.backward()
            optimizer.step()

            # Print log info
            if i % args.log_step == 0:
                print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                      .format(epoch, args.num_epochs, i, total_step, loss.item(), np.exp(loss.item()))) 
                
            # Save the model checkpoints
            if (i+1) % args.save_step == 0:
                torch.save(decoder.state_dict(), os.path.join(
                    args.model_path, 'decoder-{}-{}.ckpt'.format(epoch+1, i+1)))
                torch.save(encoder.state_dict(), os.path.join(
                    args.model_path, 'encoder-{}-{}.ckpt'.format(epoch+1, i+1)))