def train_net(cfg): # Set up data augmentation IMG_SIZE = cfg.CONST.IMG_H, cfg.CONST.IMG_W CROP_SIZE = cfg.CONST.CROP_IMG_H, cfg.CONST.CROP_IMG_W train_transforms = utils.data_transforms.Compose([ utils.data_transforms.RandomCrop(IMG_SIZE, CROP_SIZE), utils.data_transforms.RandomBackground( cfg.TRAIN.RANDOM_BG_COLOR_RANGE), utils.data_transforms.ColorJitter(cfg.TRAIN.BRIGHTNESS, cfg.TRAIN.CONTRAST, cfg.TRAIN.SATURATION), utils.data_transforms.RandomNoise(cfg.TRAIN.NOISE_STD), utils.data_transforms.Normalize(mean=cfg.DATASET.MEAN, std=cfg.DATASET.STD), utils.data_transforms.RandomFlip(), utils.data_transforms.RandomPermuteRGB(), utils.data_transforms.ToTensor(), ]) val_transforms = utils.data_transforms.Compose([ utils.data_transforms.CenterCrop(IMG_SIZE, CROP_SIZE), utils.data_transforms.RandomBackground(cfg.TEST.RANDOM_BG_COLOR_RANGE), utils.data_transforms.Normalize(mean=cfg.DATASET.MEAN, std=cfg.DATASET.STD), utils.data_transforms.ToTensor(), ]) # Set up data loader train_dataset_loader = utils.data_loaders.DATASET_LOADER_MAPPING[ cfg.DATASET.TRAIN_DATASET](cfg) val_dataset_loader = utils.data_loaders.DATASET_LOADER_MAPPING[ cfg.DATASET.TEST_DATASET](cfg) train_data_loader = paddle.io.DataLoader( dataset=train_dataset_loader.get_dataset( utils.data_loaders.DatasetType.TRAIN, cfg.CONST.N_VIEWS_RENDERING, train_transforms), batch_size=cfg.CONST.BATCH_SIZE, #num_workers=0 , # cfg.TRAIN.NUM_WORKER>0时报错,因为dev/shm/太小 https://blog.csdn.net/ctypyb2002/article/details/107914643 #pin_memory=True, use_shared_memory=False, shuffle=True, drop_last=True) val_data_loader = paddle.io.DataLoader( dataset=val_dataset_loader.get_dataset( utils.data_loaders.DatasetType.VAL, cfg.CONST.N_VIEWS_RENDERING, val_transforms), batch_size=1, #num_workers=1, #pin_memory=True, shuffle=False) # Set up networks # paddle.Model prepare fit save encoder = Encoder(cfg) decoder = Decoder(cfg) merger = Merger(cfg) refiner = Refiner(cfg) print('[DEBUG] %s Parameters in Encoder: %d.' % (dt.now(), utils.network_utils.count_parameters(encoder))) print('[DEBUG] %s Parameters in Decoder: %d.' % (dt.now(), utils.network_utils.count_parameters(decoder))) print('[DEBUG] %s Parameters in Merger: %d.' % (dt.now(), utils.network_utils.count_parameters(merger))) print('[DEBUG] %s Parameters in Refiner: %d.' % (dt.now(), utils.network_utils.count_parameters(refiner))) # # Initialize weights of networks # paddle的参数化不同,参见API # encoder.apply(utils.network_utils.init_weights) # decoder.apply(utils.network_utils.init_weights) # merger.apply(utils.network_utils.init_weights) # Set up learning rate scheduler to decay learning rates dynamically encoder_lr_scheduler = paddle.optimizer.lr.MultiStepDecay( learning_rate=cfg.TRAIN.ENCODER_LEARNING_RATE, milestones=cfg.TRAIN.ENCODER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA, verbose=True) decoder_lr_scheduler = paddle.optimizer.lr.MultiStepDecay( learning_rate=cfg.TRAIN.DECODER_LEARNING_RATE, milestones=cfg.TRAIN.DECODER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA, verbose=True) merger_lr_scheduler = paddle.optimizer.lr.MultiStepDecay( learning_rate=cfg.TRAIN.MERGER_LEARNING_RATE, milestones=cfg.TRAIN.MERGER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA, verbose=True) refiner_lr_scheduler = paddle.optimizer.lr.MultiStepDecay( learning_rate=cfg.TRAIN.REFINER_LEARNING_RATE, milestones=cfg.TRAIN.REFINER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA, verbose=True) # Set up solver # if cfg.TRAIN.POLICY == 'adam': encoder_solver = paddle.optimizer.Adam(learning_rate=encoder_lr_scheduler, parameters=encoder.parameters()) decoder_solver = paddle.optimizer.Adam(learning_rate=decoder_lr_scheduler, parameters=decoder.parameters()) merger_solver = paddle.optimizer.Adam(learning_rate=merger_lr_scheduler, parameters=merger.parameters()) refiner_solver = paddle.optimizer.Adam(learning_rate=refiner_lr_scheduler, parameters=refiner.parameters()) # if torch.cuda.is_available(): # encoder = torch.nn.DataParallel(encoder).cuda() # decoder = torch.nn.DataParallel(decoder).cuda() # merger = torch.nn.DataParallel(merger).cuda() # Set up loss functions bce_loss = paddle.nn.BCELoss() # Load pretrained model if exists init_epoch = 0 best_iou = -1 best_epoch = -1 if 'WEIGHTS' in cfg.CONST and cfg.TRAIN.RESUME_TRAIN: print('[INFO] %s Recovering from %s ...' % (dt.now(), cfg.CONST.WEIGHTS)) # load encoder_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "encoder.pdparams")) encoder_solver_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "encoder_solver.pdopt")) encoder.set_state_dict(encoder_state_dict) encoder_solver.set_state_dict(encoder_solver_state_dict) decoder_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "decoder.pdparams")) decoder_solver_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "decoder_solver.pdopt")) decoder.set_state_dict(decoder_state_dict) decoder_solver.set_state_dict(decoder_solver_state_dict) if cfg.NETWORK.USE_MERGER: merger_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "merger.pdparams")) merger_solver_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "merger_solver.pdopt")) merger.set_state_dict(merger_state_dict) merger_solver.set_state_dict(merger_solver_state_dict) if cfg.NETWORK.USE_REFINER: refiner_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "refiner.pdparams")) refiner_solver_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "refiner_solver.pdopt")) refiner.set_state_dict(refiner_state_dict) refiner_solver.set_state_dict(refiner_solver_state_dict) print( '[INFO] %s Recover complete. Current epoch #%d, Best IoU = %.4f at epoch #%d.' % (dt.now(), init_epoch, best_iou, best_epoch)) # Summary writer for TensorBoard output_dir = os.path.join(cfg.DIR.OUT_PATH, '%s', dt.now().isoformat()) log_dir = output_dir % 'logs' ckpt_dir = output_dir % 'checkpoints' # train_writer = SummaryWriter() # val_writer = SummaryWriter(os.path.join(log_dir, 'test')) train_writer = LogWriter(os.path.join(log_dir, 'train')) val_writer = LogWriter(os.path.join(log_dir, 'val')) # Training loop for epoch_idx in range(init_epoch, cfg.TRAIN.NUM_EPOCHES): # Tick / tock epoch_start_time = time() # Batch average meterics batch_time = utils.network_utils.AverageMeter() data_time = utils.network_utils.AverageMeter() encoder_losses = utils.network_utils.AverageMeter() refiner_losses = utils.network_utils.AverageMeter() # # switch models to training mode encoder.train() decoder.train() merger.train() refiner.train() batch_end_time = time() n_batches = len(train_data_loader) # print("****debug: length of train data loder",n_batches) for batch_idx, (rendering_images, ground_truth_volumes) in enumerate( train_data_loader()): # # debug # if batch_idx>1: # break # Measure data time data_time.update(time() - batch_end_time) # print("****debug: batch_idx",batch_idx) # print(rendering_images.shape) # print(ground_truth_volumes.shape) # Get data from data loader rendering_images = utils.network_utils.var_or_cuda( rendering_images) ground_truth_volumes = utils.network_utils.var_or_cuda( ground_truth_volumes) # Train the encoder, decoder, and merger image_features = encoder(rendering_images) raw_features, generated_volumes = decoder(image_features) if cfg.NETWORK.USE_MERGER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_MERGER: generated_volumes = merger(raw_features, generated_volumes) # else: # mergered_volumes = paddle.mean(generated_volumes, aixs=1) encoder_loss = bce_loss(generated_volumes, ground_truth_volumes) * 10 if cfg.NETWORK.USE_REFINER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_REFINER: generated_volumes = refiner(generated_volumes) refiner_loss = bce_loss(generated_volumes, ground_truth_volumes) * 10 # else: # refiner_loss = encoder_loss # Gradient decent encoder_solver.clear_grad() decoder_solver.clear_grad() merger_solver.clear_grad() refiner_solver.clear_grad() if cfg.NETWORK.USE_REFINER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_REFINER: encoder_loss.backward(retain_graph=True) refiner_loss.backward() # else: # encoder_loss.backward() encoder_solver.step() decoder_solver.step() merger_solver.step() refiner_solver.step() # Append loss to average metrics encoder_losses.update(encoder_loss.numpy()) refiner_losses.update(refiner_loss.numpy()) # Append loss to TensorBoard n_itr = epoch_idx * n_batches + batch_idx train_writer.add_scalar(tag='EncoderDecoder/BatchLoss', step=n_itr, value=encoder_loss.numpy()) train_writer.add_scalar('Refiner/BatchLoss', value=refiner_loss.numpy(), step=n_itr) # Tick / tock batch_time.update(time() - batch_end_time) batch_end_time = time() if (batch_idx % int(cfg.CONST.INFO_BATCH)) == 0: print( '[INFO] %s [Epoch %d/%d][Batch %d/%d] BatchTime = %.3f (s) DataTime = %.3f (s) EDLoss = %.4f RLoss = %.4f' % (dt.now(), epoch_idx + 1, cfg.TRAIN.NUM_EPOCHES, batch_idx + 1, n_batches, batch_time.val, data_time.val, encoder_loss.numpy(), refiner_loss.numpy())) # Append epoch loss to TensorBoard train_writer.add_scalar(tag='EncoderDecoder/EpochLoss', step=epoch_idx + 1, value=encoder_losses.avg) train_writer.add_scalar('Refiner/EpochLoss', value=refiner_losses.avg, step=epoch_idx + 1) # update scheduler each step encoder_lr_scheduler.step() decoder_lr_scheduler.step() merger_lr_scheduler.step() refiner_lr_scheduler.step() # Tick / tock epoch_end_time = time() print( '[INFO] %s Epoch [%d/%d] EpochTime = %.3f (s) EDLoss = %.4f RLoss = %.4f' % (dt.now(), epoch_idx + 1, cfg.TRAIN.NUM_EPOCHES, epoch_end_time - epoch_start_time, encoder_losses.avg, refiner_losses.avg)) # Update Rendering Views if cfg.TRAIN.UPDATE_N_VIEWS_RENDERING: n_views_rendering = random.randint(1, cfg.CONST.N_VIEWS_RENDERING) train_data_loader.dataset.set_n_views_rendering(n_views_rendering) print('[INFO] %s Epoch [%d/%d] Update #RenderingViews to %d' % (dt.now(), epoch_idx + 2, cfg.TRAIN.NUM_EPOCHES, n_views_rendering)) # Validate the training models iou = test_net(cfg, epoch_idx + 1, output_dir, val_data_loader, val_writer, encoder, decoder, merger, refiner) # Save weights to file if (epoch_idx + 1) % cfg.TRAIN.SAVE_FREQ == 0: if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) utils.network_utils.save_checkpoints( cfg, os.path.join(ckpt_dir, 'ckpt-epoch-%04d' % (epoch_idx + 1)), epoch_idx + 1, encoder, encoder_solver, decoder, decoder_solver, merger, merger_solver, refiner, refiner_solver, best_iou, best_epoch) if iou > best_iou: if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) best_iou = iou best_epoch = epoch_idx + 1 utils.network_utils.save_checkpoints( cfg, os.path.join(ckpt_dir, 'best-ckpt'), epoch_idx + 1, encoder, encoder_solver, decoder, decoder_solver, merger, merger_solver, refiner, refiner_solver, best_iou, best_epoch)
def test_net(cfg, epoch_idx=-1, output_dir=None, test_data_loader=None, test_writer=None, encoder=None, decoder=None, merger=None, refiner=None): # Load taxonomies of dataset taxonomies = [] with open( cfg.DATASETS[cfg.DATASET.TEST_DATASET.upper()].TAXONOMY_FILE_PATH, encoding='utf-8') as file: taxonomies = json.loads(file.read()) taxonomies = {t['taxonomy_id']: t for t in taxonomies} # # Set up data loader if test_data_loader is None: # Set up data augmentation IMG_SIZE = cfg.CONST.IMG_H, cfg.CONST.IMG_W CROP_SIZE = cfg.CONST.CROP_IMG_H, cfg.CONST.CROP_IMG_W test_transforms = utils.data_transforms.Compose([ utils.data_transforms.CenterCrop(IMG_SIZE, CROP_SIZE), utils.data_transforms.RandomBackground( cfg.TEST.RANDOM_BG_COLOR_RANGE), utils.data_transforms.Normalize(mean=cfg.DATASET.MEAN, std=cfg.DATASET.STD), utils.data_transforms.ToTensor(), ]) dataset_loader = utils.data_loaders.DATASET_LOADER_MAPPING[ cfg.DATASET.TEST_DATASET](cfg) test_data_loader = paddle.io.DataLoader( dataset=dataset_loader.get_dataset( utils.data_loaders.DatasetType.TEST, cfg.CONST.N_VIEWS_RENDERING, test_transforms), batch_size=1, # num_workers=1, shuffle=False) mode = 'test' else: mode = 'val' # paddle.io.Dataset not support 'str' input dataset_taxonomy = None rendering_image_path_template = cfg.DATASETS.SHAPENET.RENDERING_PATH volume_path_template = cfg.DATASETS.SHAPENET.VOXEL_PATH # Load all taxonomies of the dataset with open('./datasets/ShapeNet.json', encoding='utf-8') as file: dataset_taxonomy = json.loads(file.read()) # print("[INFO]TEST-- open TAXONOMY_FILE_PATH succeess") all_test_taxonomy_id_and_sample_name = [] # Load data for each category for taxonomy in dataset_taxonomy: taxonomy_folder_name = taxonomy['taxonomy_id'] # print('[INFO] %set -- Collecting files of Taxonomy[ID=%s, Name=%s]' % # (mode, taxonomy['taxonomy_id'], taxonomy['taxonomy_name'])) samples = taxonomy[mode] for sample in samples: all_test_taxonomy_id_and_sample_name.append( [taxonomy_folder_name, sample]) # print(len(all_test_taxonomy_id_and_sample_name)) # print(all_test_taxonomy_id_and_sample_name) print('[INFO] Collected files of %set' % (mode)) # Set up networks if decoder is None or encoder is None: encoder = Encoder(cfg) decoder = Decoder(cfg) merger = Merger(cfg) refiner = Refiner(cfg) # if torch.cuda.is_available(): # encoder = paddle.DataParallel(encoder) # decoder = paddle.DataParallel(decoder) # merger = paddle.DataParallel(merger) print('[INFO] %s Loading weights from %s ...' % (dt.now(), cfg.CONST.WEIGHTS)) encoder_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "encoder.pdparams")) # encoder_solver_state_dict = paddle.load(os.path.join(cfg.CONST.WEIGHTS, "encoder_solver.pdopt")) encoder.set_state_dict(encoder_state_dict) # encoder_solver.set_state_dict(encoder_solver_state_dict) decoder_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "decoder.pdparams")) # decoder_solver_state_dict = paddle.load(os.path.join(cfg.CONST.WEIGHTS, "decoder_solver.pdopt")) decoder.set_state_dict(decoder_state_dict) # decoder_solver.set_state_dict(decoder_solver_state_dict) refiner_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "refiner.pdparams")) refiner.set_state_dict(refiner_state_dict) if cfg.NETWORK.USE_MERGER: merger_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "merger.pdparams")) # merger_solver_state_dict = paddle.load(os.path.join(cfg.CONST.WEIGHTS, "merger_solver.pdopt")) merger.set_state_dict(merger_state_dict) # merger_solver.set_state_dict(merger_solver_state_dict) # Set up loss functions bce_loss = paddle.nn.BCELoss() # Testing loop n_samples = len(test_data_loader) test_iou = dict() encoder_losses = utils.network_utils.AverageMeter() refiner_losses = utils.network_utils.AverageMeter() # Switch models to evaluation mode encoder.eval() decoder.eval() merger.eval() refiner.eval() for sample_idx, (rendering_images, ground_truth_volume) in enumerate(test_data_loader): taxonomy_id = all_test_taxonomy_id_and_sample_name[sample_idx][0] sample_name = all_test_taxonomy_id_and_sample_name[sample_idx][1] # print("all_test_taxonomy_id_and_sample_name") # print(taxonomy_id) # print(sample_name) with paddle.no_grad(): # Get data from data loader rendering_images = utils.network_utils.var_or_cuda( rendering_images) ground_truth_volume = utils.network_utils.var_or_cuda( ground_truth_volume) # Test the encoder, decoder and merger image_features = encoder(rendering_images) raw_features, generated_volume = decoder(image_features) if cfg.NETWORK.USE_MERGER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_MERGER: generated_volume = merger(raw_features, generated_volume) else: generated_volume = paddle.mean(generated_volume, axis=1) encoder_loss = bce_loss(generated_volume, ground_truth_volume) * 10 if cfg.NETWORK.USE_REFINER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_REFINER: generated_volume = refiner(generated_volume) refiner_loss = bce_loss(generated_volume, ground_truth_volume) * 10 else: refiner_loss = encoder_loss # Append loss and accuracy to average metrics encoder_losses.update(encoder_loss.numpy()) refiner_losses.update(refiner_loss.numpy()) # IoU per sample sample_iou = [] for th in cfg.TEST.VOXEL_THRESH: # _volume = torch.ge(generated_volume, th).float() # intersection = torch.sum(_volume.mul(ground_truth_volume)).float() # union = torch.sum(torch.ge(_volume.add(ground_truth_volume), 1)).float() # print("#################") _volume = paddle.greater_equal( generated_volume, paddle.to_tensor(th)).astype("float32") # print(_volume) # print("@@@@@@@") # print(ground_truth_volume) intersection = paddle.sum( paddle.multiply(_volume, ground_truth_volume)) # print(paddle.greater_equal(paddle.add(_volume, ground_truth_volume).astype("float32"), paddle.to_tensor(1., dtype='float32')).astype("float32")) union = paddle.sum( paddle.greater_equal( paddle.add(_volume, ground_truth_volume).astype("float32"), paddle.to_tensor(1., dtype='float32')).astype("float32")) # print(union) sample_iou.append((intersection / union)) # IoU per taxonomy if taxonomy_id not in test_iou: test_iou[taxonomy_id] = {'n_samples': 0, 'iou': []} test_iou[taxonomy_id]['n_samples'] += 1 test_iou[taxonomy_id]['iou'].append(sample_iou) # Append generated volumes to TensorBoard if output_dir and sample_idx < 1: img_dir = output_dir % 'images' # Volume Visualization gv = generated_volume.cpu().numpy() rendering_views = utils.binvox_visualization.get_volume_views( gv, os.path.join(img_dir, 'Reconstructed'), epoch_idx) test_writer.add_image(tag='Reconstructed', img=rendering_views, step=epoch_idx) gtv = ground_truth_volume.cpu().numpy() rendering_views = utils.binvox_visualization.get_volume_views( gtv, os.path.join(img_dir, 'GroundTruth'), epoch_idx) test_writer.add_image(tag='GroundTruth', img=rendering_views, step=epoch_idx) # # Print sample loss and IoU # print('[INFO] %s Test[%d/%d] Taxonomy = %s Sample = %s EDLoss = %.4f RLoss = %.4f IoU = %s' % # (dt.now(), sample_idx + 1, n_samples, taxonomy_id, sample_name, encoder_loss, refiner_loss, # ['%.4f' % si for si in sample_iou])) # Output testing results mean_iou = [] for taxonomy_id in test_iou: test_iou[taxonomy_id]['iou'] = np.mean(test_iou[taxonomy_id]['iou'], axis=0) mean_iou.append(test_iou[taxonomy_id]['iou'] * test_iou[taxonomy_id]['n_samples']) mean_iou = np.sum(mean_iou, axis=0) / n_samples # Print header print( '============================ TEST RESULTS ============================' ) print('Taxonomy', end='\t') print('#Sample', end='\t') print('Baseline', end='\t') for th in cfg.TEST.VOXEL_THRESH: print('t=%.2f' % th, end='\t') print() # Print body for taxonomy_id in test_iou: print('%s' % taxonomies[taxonomy_id]['taxonomy_name'].ljust(8), end='\t') print('%d' % test_iou[taxonomy_id]['n_samples'], end='\t') if 'baseline' in taxonomies[taxonomy_id]: print('%.4f' % taxonomies[taxonomy_id]['baseline'][ '%d-view' % cfg.CONST.N_VIEWS_RENDERING], end='\t\t') else: print('N/a', end='\t\t') for ti in test_iou[taxonomy_id]['iou']: print('%.4f' % ti, end='\t') print() # Print mean IoU for each threshold print('Overall ', end='\t\t\t\t') for mi in mean_iou: print('%.4f' % mi, end='\t') print('\n') # Add testing results to TensorBoard max_iou = np.max(mean_iou) if test_writer is not None: test_writer.add_scalar(tag='EncoderDecoder/EpochLoss', value=encoder_losses.avg, step=epoch_idx) test_writer.add_scalar(tag='Refiner/EpochLoss', value=refiner_losses.avg, step=epoch_idx) test_writer.add_scalar(tag='Refiner/IoU', value=max_iou, step=epoch_idx) return max_iou