def train_net(cfg): # Enable the inbuilt cudnn auto-tuner to find the best algorithm to use torch.backends.cudnn.benchmark = True # Set up data augmentation IMG_SIZE = cfg.CONST.IMG_H, cfg.CONST.IMG_W CROP_SIZE = cfg.CONST.CROP_IMG_H, cfg.CONST.CROP_IMG_W train_transforms = utils.data_transforms.Compose([ utils.data_transforms.RandomCrop(IMG_SIZE, CROP_SIZE), utils.data_transforms.RandomBackground( cfg.TRAIN.RANDOM_BG_COLOR_RANGE), utils.data_transforms.ColorJitter(cfg.TRAIN.BRIGHTNESS, cfg.TRAIN.CONTRAST, cfg.TRAIN.SATURATION), utils.data_transforms.RandomNoise(cfg.TRAIN.NOISE_STD), utils.data_transforms.Normalize(mean=cfg.DATASET.MEAN, std=cfg.DATASET.STD), utils.data_transforms.RandomFlip(), utils.data_transforms.RandomPermuteRGB(), utils.data_transforms.ToTensor(), ]) val_transforms = utils.data_transforms.Compose([ utils.data_transforms.CenterCrop(IMG_SIZE, CROP_SIZE), utils.data_transforms.RandomBackground(cfg.TEST.RANDOM_BG_COLOR_RANGE), utils.data_transforms.Normalize(mean=cfg.DATASET.MEAN, std=cfg.DATASET.STD), utils.data_transforms.ToTensor(), ]) # Set up data loader train_dataset_loader = utils.data_loaders.DATASET_LOADER_MAPPING[ cfg.DATASET.TRAIN_DATASET](cfg) val_dataset_loader = utils.data_loaders.DATASET_LOADER_MAPPING[ cfg.DATASET.TEST_DATASET](cfg) train_data_loader = torch.utils.data.DataLoader( dataset=train_dataset_loader.get_dataset( utils.data_loaders.DatasetType.TRAIN, cfg.CONST.N_VIEWS_RENDERING, train_transforms), batch_size=cfg.CONST.BATCH_SIZE, num_workers=cfg.TRAIN.NUM_WORKER, pin_memory=True, shuffle=True, drop_last=True) val_data_loader = torch.utils.data.DataLoader( dataset=val_dataset_loader.get_dataset( utils.data_loaders.DatasetType.VAL, cfg.CONST.N_VIEWS_RENDERING, val_transforms), batch_size=1, num_workers=1, pin_memory=True, shuffle=False) # Set up networks encoder = Encoder(cfg) decoder = Decoder(cfg) refiner = Refiner(cfg) merger = Merger(cfg) print('[DEBUG] %s Parameters in Encoder: %d.' % (dt.now(), utils.network_utils.count_parameters(encoder))) print('[DEBUG] %s Parameters in Decoder: %d.' % (dt.now(), utils.network_utils.count_parameters(decoder))) print('[DEBUG] %s Parameters in Refiner: %d.' % (dt.now(), utils.network_utils.count_parameters(refiner))) print('[DEBUG] %s Parameters in Merger: %d.' % (dt.now(), utils.network_utils.count_parameters(merger))) # Initialize weights of networks encoder.apply(utils.network_utils.init_weights) decoder.apply(utils.network_utils.init_weights) refiner.apply(utils.network_utils.init_weights) merger.apply(utils.network_utils.init_weights) # Set up solver if cfg.TRAIN.POLICY == 'adam': encoder_solver = torch.optim.Adam(filter(lambda p: p.requires_grad, encoder.parameters()), lr=cfg.TRAIN.ENCODER_LEARNING_RATE, betas=cfg.TRAIN.BETAS) decoder_solver = torch.optim.Adam(decoder.parameters(), lr=cfg.TRAIN.DECODER_LEARNING_RATE, betas=cfg.TRAIN.BETAS) refiner_solver = torch.optim.Adam(refiner.parameters(), lr=cfg.TRAIN.REFINER_LEARNING_RATE, betas=cfg.TRAIN.BETAS) merger_solver = torch.optim.Adam(merger.parameters(), lr=cfg.TRAIN.MERGER_LEARNING_RATE, betas=cfg.TRAIN.BETAS) elif cfg.TRAIN.POLICY == 'sgd': encoder_solver = torch.optim.SGD(filter(lambda p: p.requires_grad, encoder.parameters()), lr=cfg.TRAIN.ENCODER_LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM) decoder_solver = torch.optim.SGD(decoder.parameters(), lr=cfg.TRAIN.DECODER_LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM) refiner_solver = torch.optim.SGD(refiner.parameters(), lr=cfg.TRAIN.REFINER_LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM) merger_solver = torch.optim.SGD(merger.parameters(), lr=cfg.TRAIN.MERGER_LEARNING_RATE, momentum=cfg.TRAIN.MOMENTUM) else: raise Exception('[FATAL] %s Unknown optimizer %s.' % (dt.now(), cfg.TRAIN.POLICY)) # Set up learning rate scheduler to decay learning rates dynamically encoder_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( encoder_solver, milestones=cfg.TRAIN.ENCODER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA) decoder_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( decoder_solver, milestones=cfg.TRAIN.DECODER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA) refiner_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( refiner_solver, milestones=cfg.TRAIN.REFINER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA) merger_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( merger_solver, milestones=cfg.TRAIN.MERGER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA) if torch.cuda.is_available(): encoder = torch.nn.DataParallel(encoder).cuda() decoder = torch.nn.DataParallel(decoder).cuda() refiner = torch.nn.DataParallel(refiner).cuda() merger = torch.nn.DataParallel(merger).cuda() # Set up loss functions bce_loss = torch.nn.BCELoss() # Load pretrained model if exists init_epoch = 0 best_iou = -1 best_epoch = -1 if 'WEIGHTS' in cfg.CONST and cfg.TRAIN.RESUME_TRAIN: print('[INFO] %s Recovering from %s ...' % (dt.now(), cfg.CONST.WEIGHTS)) checkpoint = torch.load(cfg.CONST.WEIGHTS) init_epoch = checkpoint['epoch_idx'] best_iou = checkpoint['best_iou'] best_epoch = checkpoint['best_epoch'] encoder.load_state_dict(checkpoint['encoder_state_dict']) decoder.load_state_dict(checkpoint['decoder_state_dict']) if cfg.NETWORK.USE_REFINER: refiner.load_state_dict(checkpoint['refiner_state_dict']) if cfg.NETWORK.USE_MERGER: merger.load_state_dict(checkpoint['merger_state_dict']) print('[INFO] %s Recover complete. Current epoch #%d, Best IoU = %.4f at epoch #%d.' \ % (dt.now(), init_epoch, best_iou, best_epoch)) # Summary writer for TensorBoard output_dir = os.path.join(cfg.DIR.OUT_PATH, '%s', dt.now().isoformat()) log_dir = output_dir % 'logs' ckpt_dir = output_dir % 'checkpoints' train_writer = SummaryWriter(os.path.join(log_dir, 'train')) val_writer = SummaryWriter(os.path.join(log_dir, 'test')) # Training loop for epoch_idx in range(init_epoch, cfg.TRAIN.NUM_EPOCHES): # Tick / tock epoch_start_time = time() # Batch average meterics batch_time = utils.network_utils.AverageMeter() data_time = utils.network_utils.AverageMeter() encoder_losses = utils.network_utils.AverageMeter() refiner_losses = utils.network_utils.AverageMeter() # Adjust learning rate encoder_lr_scheduler.step() decoder_lr_scheduler.step() refiner_lr_scheduler.step() merger_lr_scheduler.step() # switch models to training mode encoder.train() decoder.train() merger.train() refiner.train() batch_end_time = time() n_batches = len(train_data_loader) for batch_idx, (taxonomy_names, sample_names, rendering_images, ground_truth_volumes) in enumerate(train_data_loader): # Measure data time data_time.update(time() - batch_end_time) # Get data from data loader rendering_images = utils.network_utils.var_or_cuda( rendering_images) ground_truth_volumes = utils.network_utils.var_or_cuda( ground_truth_volumes) # Train the encoder, decoder, refiner, and merger image_features = encoder(rendering_images) raw_features, generated_volumes = decoder(image_features) if cfg.NETWORK.USE_MERGER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_MERGER: generated_volumes = merger(raw_features, generated_volumes) else: generated_volumes = torch.mean(generated_volumes, dim=1) encoder_loss = bce_loss(generated_volumes, ground_truth_volumes) * 10 if cfg.NETWORK.USE_REFINER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_REFINER: generated_volumes = refiner(generated_volumes) refiner_loss = bce_loss(generated_volumes, ground_truth_volumes) * 10 else: refiner_loss = encoder_loss # Gradient decent encoder.zero_grad() decoder.zero_grad() refiner.zero_grad() merger.zero_grad() if cfg.NETWORK.USE_REFINER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_REFINER: encoder_loss.backward(retain_graph=True) refiner_loss.backward() else: encoder_loss.backward() encoder_solver.step() decoder_solver.step() refiner_solver.step() merger_solver.step() # Append loss to average metrics encoder_losses.update(encoder_loss.item()) refiner_losses.update(refiner_loss.item()) # Append loss to TensorBoard n_itr = epoch_idx * n_batches + batch_idx train_writer.add_scalar('EncoderDecoder/BatchLoss', encoder_loss.item(), n_itr) train_writer.add_scalar('Refiner/BatchLoss', refiner_loss.item(), n_itr) # Tick / tock batch_time.update(time() - batch_end_time) batch_end_time = time() print('[INFO] %s [Epoch %d/%d][Batch %d/%d] BatchTime = %.3f (s) DataTime = %.3f (s) EDLoss = %.4f RLoss = %.4f' % \ (dt.now(), epoch_idx + 1, cfg.TRAIN.NUM_EPOCHES, batch_idx + 1, n_batches, \ batch_time.val, data_time.val, encoder_loss.item(), refiner_loss.item())) # Append epoch loss to TensorBoard train_writer.add_scalar('EncoderDecoder/EpochLoss', encoder_losses.avg, epoch_idx + 1) train_writer.add_scalar('Refiner/EpochLoss', refiner_losses.avg, epoch_idx + 1) # Tick / tock epoch_end_time = time() print('[INFO] %s Epoch [%d/%d] EpochTime = %.3f (s) EDLoss = %.4f RLoss = %.4f' % (dt.now(), epoch_idx + 1, cfg.TRAIN.NUM_EPOCHES, epoch_end_time - epoch_start_time, \ encoder_losses.avg, refiner_losses.avg)) # Update Rendering Views if cfg.TRAIN.UPDATE_N_VIEWS_RENDERING: n_views_rendering = random.randint(1, cfg.CONST.N_VIEWS_RENDERING) train_data_loader.dataset.set_n_views_rendering(n_views_rendering) print('[INFO] %s Epoch [%d/%d] Update #RenderingViews to %d' % \ (dt.now(), epoch_idx + 2, cfg.TRAIN.NUM_EPOCHES, n_views_rendering)) # Validate the training models iou = test_net(cfg, epoch_idx + 1, output_dir, val_data_loader, val_writer, encoder, decoder, refiner, merger) # Save weights to file if (epoch_idx + 1) % cfg.TRAIN.SAVE_FREQ == 0: if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) utils.network_utils.save_checkpoints(cfg, \ os.path.join(ckpt_dir, 'ckpt-epoch-%04d.pth' % (epoch_idx + 1)), \ epoch_idx + 1, encoder, encoder_solver, decoder, decoder_solver, \ refiner, refiner_solver, merger, merger_solver, best_iou, best_epoch) if iou > best_iou: if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) best_iou = iou best_epoch = epoch_idx + 1 utils.network_utils.save_checkpoints(cfg, \ os.path.join(ckpt_dir, 'best-ckpt.pth'), \ epoch_idx + 1, encoder, encoder_solver, decoder, decoder_solver, \ refiner, refiner_solver, merger, merger_solver, best_iou, best_epoch) # Close SummaryWriter for TensorBoard train_writer.close() val_writer.close()
def train_net(cfg): # Set up data augmentation IMG_SIZE = cfg.CONST.IMG_H, cfg.CONST.IMG_W CROP_SIZE = cfg.CONST.CROP_IMG_H, cfg.CONST.CROP_IMG_W train_transforms = utils.data_transforms.Compose([ utils.data_transforms.RandomCrop(IMG_SIZE, CROP_SIZE), utils.data_transforms.RandomBackground( cfg.TRAIN.RANDOM_BG_COLOR_RANGE), utils.data_transforms.ColorJitter(cfg.TRAIN.BRIGHTNESS, cfg.TRAIN.CONTRAST, cfg.TRAIN.SATURATION), utils.data_transforms.RandomNoise(cfg.TRAIN.NOISE_STD), utils.data_transforms.Normalize(mean=cfg.DATASET.MEAN, std=cfg.DATASET.STD), utils.data_transforms.RandomFlip(), utils.data_transforms.RandomPermuteRGB(), utils.data_transforms.ToTensor(), ]) val_transforms = utils.data_transforms.Compose([ utils.data_transforms.CenterCrop(IMG_SIZE, CROP_SIZE), utils.data_transforms.RandomBackground(cfg.TEST.RANDOM_BG_COLOR_RANGE), utils.data_transforms.Normalize(mean=cfg.DATASET.MEAN, std=cfg.DATASET.STD), utils.data_transforms.ToTensor(), ]) # Set up data loader train_dataset_loader = utils.data_loaders.DATASET_LOADER_MAPPING[ cfg.DATASET.TRAIN_DATASET](cfg) val_dataset_loader = utils.data_loaders.DATASET_LOADER_MAPPING[ cfg.DATASET.TEST_DATASET](cfg) train_data_loader = paddle.io.DataLoader( dataset=train_dataset_loader.get_dataset( utils.data_loaders.DatasetType.TRAIN, cfg.CONST.N_VIEWS_RENDERING, train_transforms), batch_size=cfg.CONST.BATCH_SIZE, #num_workers=0 , # cfg.TRAIN.NUM_WORKER>0时报错,因为dev/shm/太小 https://blog.csdn.net/ctypyb2002/article/details/107914643 #pin_memory=True, use_shared_memory=False, shuffle=True, drop_last=True) val_data_loader = paddle.io.DataLoader( dataset=val_dataset_loader.get_dataset( utils.data_loaders.DatasetType.VAL, cfg.CONST.N_VIEWS_RENDERING, val_transforms), batch_size=1, #num_workers=1, #pin_memory=True, shuffle=False) # Set up networks # paddle.Model prepare fit save encoder = Encoder(cfg) decoder = Decoder(cfg) merger = Merger(cfg) refiner = Refiner(cfg) print('[DEBUG] %s Parameters in Encoder: %d.' % (dt.now(), utils.network_utils.count_parameters(encoder))) print('[DEBUG] %s Parameters in Decoder: %d.' % (dt.now(), utils.network_utils.count_parameters(decoder))) print('[DEBUG] %s Parameters in Merger: %d.' % (dt.now(), utils.network_utils.count_parameters(merger))) print('[DEBUG] %s Parameters in Refiner: %d.' % (dt.now(), utils.network_utils.count_parameters(refiner))) # # Initialize weights of networks # paddle的参数化不同,参见API # encoder.apply(utils.network_utils.init_weights) # decoder.apply(utils.network_utils.init_weights) # merger.apply(utils.network_utils.init_weights) # Set up learning rate scheduler to decay learning rates dynamically encoder_lr_scheduler = paddle.optimizer.lr.MultiStepDecay( learning_rate=cfg.TRAIN.ENCODER_LEARNING_RATE, milestones=cfg.TRAIN.ENCODER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA, verbose=True) decoder_lr_scheduler = paddle.optimizer.lr.MultiStepDecay( learning_rate=cfg.TRAIN.DECODER_LEARNING_RATE, milestones=cfg.TRAIN.DECODER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA, verbose=True) merger_lr_scheduler = paddle.optimizer.lr.MultiStepDecay( learning_rate=cfg.TRAIN.MERGER_LEARNING_RATE, milestones=cfg.TRAIN.MERGER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA, verbose=True) refiner_lr_scheduler = paddle.optimizer.lr.MultiStepDecay( learning_rate=cfg.TRAIN.REFINER_LEARNING_RATE, milestones=cfg.TRAIN.REFINER_LR_MILESTONES, gamma=cfg.TRAIN.GAMMA, verbose=True) # Set up solver # if cfg.TRAIN.POLICY == 'adam': encoder_solver = paddle.optimizer.Adam(learning_rate=encoder_lr_scheduler, parameters=encoder.parameters()) decoder_solver = paddle.optimizer.Adam(learning_rate=decoder_lr_scheduler, parameters=decoder.parameters()) merger_solver = paddle.optimizer.Adam(learning_rate=merger_lr_scheduler, parameters=merger.parameters()) refiner_solver = paddle.optimizer.Adam(learning_rate=refiner_lr_scheduler, parameters=refiner.parameters()) # if torch.cuda.is_available(): # encoder = torch.nn.DataParallel(encoder).cuda() # decoder = torch.nn.DataParallel(decoder).cuda() # merger = torch.nn.DataParallel(merger).cuda() # Set up loss functions bce_loss = paddle.nn.BCELoss() # Load pretrained model if exists init_epoch = 0 best_iou = -1 best_epoch = -1 if 'WEIGHTS' in cfg.CONST and cfg.TRAIN.RESUME_TRAIN: print('[INFO] %s Recovering from %s ...' % (dt.now(), cfg.CONST.WEIGHTS)) # load encoder_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "encoder.pdparams")) encoder_solver_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "encoder_solver.pdopt")) encoder.set_state_dict(encoder_state_dict) encoder_solver.set_state_dict(encoder_solver_state_dict) decoder_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "decoder.pdparams")) decoder_solver_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "decoder_solver.pdopt")) decoder.set_state_dict(decoder_state_dict) decoder_solver.set_state_dict(decoder_solver_state_dict) if cfg.NETWORK.USE_MERGER: merger_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "merger.pdparams")) merger_solver_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "merger_solver.pdopt")) merger.set_state_dict(merger_state_dict) merger_solver.set_state_dict(merger_solver_state_dict) if cfg.NETWORK.USE_REFINER: refiner_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "refiner.pdparams")) refiner_solver_state_dict = paddle.load( os.path.join(cfg.CONST.WEIGHTS, "refiner_solver.pdopt")) refiner.set_state_dict(refiner_state_dict) refiner_solver.set_state_dict(refiner_solver_state_dict) print( '[INFO] %s Recover complete. Current epoch #%d, Best IoU = %.4f at epoch #%d.' % (dt.now(), init_epoch, best_iou, best_epoch)) # Summary writer for TensorBoard output_dir = os.path.join(cfg.DIR.OUT_PATH, '%s', dt.now().isoformat()) log_dir = output_dir % 'logs' ckpt_dir = output_dir % 'checkpoints' # train_writer = SummaryWriter() # val_writer = SummaryWriter(os.path.join(log_dir, 'test')) train_writer = LogWriter(os.path.join(log_dir, 'train')) val_writer = LogWriter(os.path.join(log_dir, 'val')) # Training loop for epoch_idx in range(init_epoch, cfg.TRAIN.NUM_EPOCHES): # Tick / tock epoch_start_time = time() # Batch average meterics batch_time = utils.network_utils.AverageMeter() data_time = utils.network_utils.AverageMeter() encoder_losses = utils.network_utils.AverageMeter() refiner_losses = utils.network_utils.AverageMeter() # # switch models to training mode encoder.train() decoder.train() merger.train() refiner.train() batch_end_time = time() n_batches = len(train_data_loader) # print("****debug: length of train data loder",n_batches) for batch_idx, (rendering_images, ground_truth_volumes) in enumerate( train_data_loader()): # # debug # if batch_idx>1: # break # Measure data time data_time.update(time() - batch_end_time) # print("****debug: batch_idx",batch_idx) # print(rendering_images.shape) # print(ground_truth_volumes.shape) # Get data from data loader rendering_images = utils.network_utils.var_or_cuda( rendering_images) ground_truth_volumes = utils.network_utils.var_or_cuda( ground_truth_volumes) # Train the encoder, decoder, and merger image_features = encoder(rendering_images) raw_features, generated_volumes = decoder(image_features) if cfg.NETWORK.USE_MERGER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_MERGER: generated_volumes = merger(raw_features, generated_volumes) # else: # mergered_volumes = paddle.mean(generated_volumes, aixs=1) encoder_loss = bce_loss(generated_volumes, ground_truth_volumes) * 10 if cfg.NETWORK.USE_REFINER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_REFINER: generated_volumes = refiner(generated_volumes) refiner_loss = bce_loss(generated_volumes, ground_truth_volumes) * 10 # else: # refiner_loss = encoder_loss # Gradient decent encoder_solver.clear_grad() decoder_solver.clear_grad() merger_solver.clear_grad() refiner_solver.clear_grad() if cfg.NETWORK.USE_REFINER and epoch_idx >= cfg.TRAIN.EPOCH_START_USE_REFINER: encoder_loss.backward(retain_graph=True) refiner_loss.backward() # else: # encoder_loss.backward() encoder_solver.step() decoder_solver.step() merger_solver.step() refiner_solver.step() # Append loss to average metrics encoder_losses.update(encoder_loss.numpy()) refiner_losses.update(refiner_loss.numpy()) # Append loss to TensorBoard n_itr = epoch_idx * n_batches + batch_idx train_writer.add_scalar(tag='EncoderDecoder/BatchLoss', step=n_itr, value=encoder_loss.numpy()) train_writer.add_scalar('Refiner/BatchLoss', value=refiner_loss.numpy(), step=n_itr) # Tick / tock batch_time.update(time() - batch_end_time) batch_end_time = time() if (batch_idx % int(cfg.CONST.INFO_BATCH)) == 0: print( '[INFO] %s [Epoch %d/%d][Batch %d/%d] BatchTime = %.3f (s) DataTime = %.3f (s) EDLoss = %.4f RLoss = %.4f' % (dt.now(), epoch_idx + 1, cfg.TRAIN.NUM_EPOCHES, batch_idx + 1, n_batches, batch_time.val, data_time.val, encoder_loss.numpy(), refiner_loss.numpy())) # Append epoch loss to TensorBoard train_writer.add_scalar(tag='EncoderDecoder/EpochLoss', step=epoch_idx + 1, value=encoder_losses.avg) train_writer.add_scalar('Refiner/EpochLoss', value=refiner_losses.avg, step=epoch_idx + 1) # update scheduler each step encoder_lr_scheduler.step() decoder_lr_scheduler.step() merger_lr_scheduler.step() refiner_lr_scheduler.step() # Tick / tock epoch_end_time = time() print( '[INFO] %s Epoch [%d/%d] EpochTime = %.3f (s) EDLoss = %.4f RLoss = %.4f' % (dt.now(), epoch_idx + 1, cfg.TRAIN.NUM_EPOCHES, epoch_end_time - epoch_start_time, encoder_losses.avg, refiner_losses.avg)) # Update Rendering Views if cfg.TRAIN.UPDATE_N_VIEWS_RENDERING: n_views_rendering = random.randint(1, cfg.CONST.N_VIEWS_RENDERING) train_data_loader.dataset.set_n_views_rendering(n_views_rendering) print('[INFO] %s Epoch [%d/%d] Update #RenderingViews to %d' % (dt.now(), epoch_idx + 2, cfg.TRAIN.NUM_EPOCHES, n_views_rendering)) # Validate the training models iou = test_net(cfg, epoch_idx + 1, output_dir, val_data_loader, val_writer, encoder, decoder, merger, refiner) # Save weights to file if (epoch_idx + 1) % cfg.TRAIN.SAVE_FREQ == 0: if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) utils.network_utils.save_checkpoints( cfg, os.path.join(ckpt_dir, 'ckpt-epoch-%04d' % (epoch_idx + 1)), epoch_idx + 1, encoder, encoder_solver, decoder, decoder_solver, merger, merger_solver, refiner, refiner_solver, best_iou, best_epoch) if iou > best_iou: if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) best_iou = iou best_epoch = epoch_idx + 1 utils.network_utils.save_checkpoints( cfg, os.path.join(ckpt_dir, 'best-ckpt'), epoch_idx + 1, encoder, encoder_solver, decoder, decoder_solver, merger, merger_solver, refiner, refiner_solver, best_iou, best_epoch)