Example #1
0
    def createShaderFromConfig(cls, shaderConfig):
        """create a shader and engine if not already available"""

        if not cls.shaderExistsInScene(shaderConfig):
            shader = cmds.shadingNode(
                shaderConfig['type'],
                name=shaderConfig['uid'],
                asShader=True)
            cmds.setAttr(shader + '.color', *shaderConfig['color'], type='double3')
            if 'transparency' in shaderConfig:
                cmds.setAttr(
                    shader + '.transparency',
                    *shaderConfig['transparency'], type='double3')

            shaderEngine = cmds.sets(
                renderable=True,
                noSurfaceShader=True,
                empty=True,
                name=shader + '_SG')
            cmds.connectAttr(shader + '.outColor', shaderEngine + '.surfaceShader')
        else:
            shader  = shaderConfig['uid']
            engines = cmds.listConnections(shader + '.outColor')
            if engines:
                shaderEngine = engines[0]
            else:
                shaderEngine = cmds.sets(
                    renderable=True,
                    noSurfaceShader=True,
                    empty=True,
                    name=shader + '_SG')
                cmds.connectAttr(shader + '.outColor', shaderEngine + '.surfaceShader')

        return shader, shaderEngine
Example #2
0
    def getTrackManagerNode(cls, trackSetNode =None, createIfMissing =False):
        """ Returns the name of the track manager nodeName for the current
            Cadence scene.

            trackSetNode: The track set nodeName on which to find the track
            manager nodeName.  If no nodeName is specified the method will look
            it up internally.

            createIfMissing: If true and no track manager nodeName is found one
            will be created and connected to the track set nodeName, which will
            also be created if one does not exist. """

        if not trackSetNode:
            trackSetNode = cls.getTrackSetNode(createIfMissing=createIfMissing)

        connects = cmds.listConnections(
                trackSetNode + '.usedBy',
                source=True,
                destination=False)
        if connects:
            for node in connects:
                if cmds.nodeType(node) == 'trackManager':
                    return node

        if createIfMissing:
            node = cmds.createNode('trackManager')
            cmds.connectAttr(
                node + '.trackSet', trackSetNode + '.usedBy', force=True)
            return node

        return None
Example #3
0
    def create(self):
        #checking if shader exists
        shadExist = 0
        allShaders = cmds.ls(mat=1)
        for shadeCheck in allShaders:
            if (shadeCheck == self.name):
                shadExist = 1

        if (shadExist == 0):
            cmds.sets(renderable=True,
                      noSurfaceShader=True,
                      empty=True,
                      name=self.name + "SG")
            cmds.shadingNode(self.type, asShader=True, name=self.name)
            # 0.0, 0.8, 1.0 color
            cmds.setAttr(self.name + ".color",
                         self.color[0],
                         self.color[1],
                         self.color[2],
                         type='double3')
            #transparency between 0.8 - 0.9 is good
            cmds.setAttr(self.name + ".transparency",
                         self.trans[0],
                         self.trans[1],
                         self.trans[2],
                         type="double3")
            cmds.setAttr(self.name + ".specularColor",
                         self.specClr[0],
                         self.specClr[1],
                         self.specClr[2],
                         type='double3')
            cmds.connectAttr(self.name + ".outColor",
                             self.name + "SG.surfaceShader",
                             f=True)
Example #4
0
    def _makeMolecule(self):
        #H2O
        O = cmds.polySphere(r=1, n='O', ax = [0,0,0]);
        H1 = cmds.polySphere(r=0.8, n='H1', ax=[0,0,0]);
        H2 = cmds.polySphere(r=0.8, n='H2', ax=[0,0,0]);
        cmds.move(0.0,0.0,1,H1, r=True)
        cmds.move(0.0,0.0,-1,H2, r=True)
        cmds.xform(H1, piv=[0,0,0], ws=True)
        cmds.xform(H2, piv=[0,0,0], ws=True)
        cmds.rotate(0,'60',0, H1);

        #group O, H1, H2 as a water molecule
        H2O = cmds.group( empty=True, name='H2O' )
        cmds.parent(H1,H2,O,H2O)

        #paint on colors for the water molecule
        #create red lambert
        cmds.sets( renderable=True, noSurfaceShader=True, empty=True, name='O_WhiteSG' )
        cmds.shadingNode( 'lambert', asShader=True, name='O_White' )
        cmds.setAttr( 'O_White.color', 1, 1, 1, type='double3')
        cmds.connectAttr('O_White.outColor', 'O_WhiteSG.surfaceShader')
        #create red lambert
        cmds.sets( renderable=True, noSurfaceShader=True, empty=True, name='H_RedSG' )
        cmds.shadingNode( 'lambert', asShader=True, name='H_Red' )
        cmds.setAttr( 'H_Red.color', 1, 0, 0, type='double3')
        cmds.connectAttr('H_Red.outColor', 'H_RedSG.surfaceShader')

        #assign the material
        cmds.sets('H1', edit=True, forceElement='H_RedSG')
        cmds.sets('H2', edit=True, forceElement='H_RedSG')
        cmds.sets('O', edit=True, forceElement='O_WhiteSG')
        return H2O
Example #5
0
    def remove(cls):
        prints = cls.getTargets(1)
        if not prints:
            return False

        for p in prints:
            if not cmds.attributeQuery(cls._PREVIOUS_PRINT_ATTR, node=p, exists=True):
                print 'UNRECOGNIZED ITEM: "%s" is not a valid footprint and has been skipped.' % p
                continue

            nexts = cls.getNext(p)
            for c in nexts:
                cmds.disconnectAttr(p + '.message', c + '.' + cls._PREVIOUS_PRINT_ATTR)

            prevs = cls.getPrevious(p)
            for c in prevs:
                try:
                    cmds.disconnectAttr(c + '.message', p + '.' + cls._PREVIOUS_PRINT_ATTR)
                except Exception, err:
                    print 'DISCONNECT FAILURE | Unable to disconnect'
                    print '\tTarget:', str(p) + '.' + cls._PREVIOUS_PRINT_ATTR
                    print '\tSource:', str(c) + '.message'
                    raise

            cmds.deleteAttr(p + '.' + cls._PREVIOUS_PRINT_ATTR)
            cmds.connectAttr(
                prevs[0] + '.message',
                nexts[0] + '.' + cls._PREVIOUS_PRINT_ATTR,
                force=True
            )
Example #6
0
 def __init__(self, name, r, g, b):
     AA = mc.shadingNode('phong', asShader=True, n=name + '_AA')
     self.AASG = mc.sets(r=True, nss=True, em=True, n=name + '_AASG')
     mc.connectAttr(AA + '.outColor', self.AASG + '.surfaceShader')
     mc.setAttr(AA + '.color', r, g, b, type='double3')
     mc.setAttr(AA + '.cosinePower', 2)
     mc.setAttr(AA + '.specularColor', r, g, b, type='double3')
     mc.setAttr(AA + '.reflectivity', 0.2)
Example #7
0
 def __init__(self, name, r, g, b):
     ### blue fine metallic
     FM = mc.shadingNode('phong', asShader=True, n=name + 'FM')
     self.FMSG = mc.sets(r=True, nss=True, em=True, n=name + 'FMSG')
     mc.connectAttr(FM + '.outColor', self.FMSG + '.surfaceShader')
     mc.setAttr(FM + '.color', r, g, b, type='double3')
     mc.setAttr(FM + '.cosinePower', 20)
     mc.setAttr(FM + '.specularColor', r, g, b, type='double3')
     mc.setAttr(FM + '.reflectivity', 0.8)
Example #8
0
def whiteAnodizedAluminum():
    ### white anodized aluminum
    global whiteAASG
    whiteAA = mc.shadingNode('phong', asShader=True, n='whiteAA')
    whiteAASG = mc.sets(r=True, nss=True, em=True, n='whiteAASG')
    mc.connectAttr(whiteAA + '.outColor', whiteAASG + '.surfaceShader')
    mc.setAttr(whiteAA + '.color', 0.9, 0.9, 0.9, type='double3')
    mc.setAttr(whiteAA + '.cosinePower', 2)
    mc.setAttr(whiteAA + '.specularColor', 0.9, 0.9, 0.9, type='double3')
    mc.setAttr(whiteAA + '.reflectivity', 0.2)
Example #9
0
def redFineMettalic():
    ### red fine metallic
    global redFMSG
    redFM = mc.shadingNode('phong', asShader=True, n='redFM')
    redFMSG = mc.sets(r=True, nss=True, em=True, n='redFMSG')
    mc.connectAttr(redFM + '.outColor', redFMSG + '.surfaceShader')
    mc.setAttr(redFM + '.color', 0.5, 0.0395, 0.0395, type='double3')
    mc.setAttr(redFM + '.cosinePower', 20)
    mc.setAttr(redFM + '.specularColor', 0.5, 0.0395, 0.0395, type='double3')
    mc.setAttr(redFM + '.reflectivity', 0.8)
Example #10
0
def blueAnodizedAluminum():
    ### blue Anodized aluminum
    global blueAASG
    blueAA = mc.shadingNode('phong', asShader=True, n='blueAA')
    blueAASG = mc.sets(r=True, nss=True, em=True, n='blueAASG')
    mc.connectAttr(blueAA + '.outColor', blueAASG + '.surfaceShader')
    mc.setAttr(blueAA + '.color', 0.0, 0.0, 0.3, type='double3')
    mc.setAttr(blueAA + '.cosinePower', 2)
    mc.setAttr(blueAA + '.specularColor', 0.0, 0.0, 0.3, type='double3')
    mc.setAttr(blueAA + '.reflectivity', 0.2)
Example #11
0
def blueFineMetallic():
    ### blue fine metallic
    global blueFMSG
    blueFM = mc.shadingNode('phong', asShader=True, n='blueFM')
    blueFMSG = mc.sets(r=True, nss=True, em=True, n='blueFMSG')
    mc.connectAttr(blueFM + '.outColor', blueFMSG + '.surfaceShader')
    mc.setAttr(blueFM + '.color', 0.04, 0.04, 0.5, type='double3')
    mc.setAttr(blueFM + '.cosinePower', 20)
    mc.setAttr(blueFM + '.specularColor', 0.04, 0.04, 0.5, type='double3')
    mc.setAttr(blueFM + '.reflectivity', 0.8)
Example #12
0
def redAnodizedAluminum():
    ### red anodized aluminum
    global redAASG
    redAA = mc.shadingNode('phong', asShader=True, n='redAA')
    redAASG = mc.sets(r=True, nss=True, em=True, n='redAASG')
    mc.connectAttr(redAA + '.outColor', redAASG + '.surfaceShader')
    mc.setAttr(redAA + '.color', 0.5, 0.0395, 0.0395, type='double3')
    mc.setAttr(redAA + '.cosinePower', 2)
    mc.setAttr(redAA + '.specularColor', 0.5, 0.0395, 0.0395, type='double3')
    mc.setAttr(redAA + '.reflectivity', 0.2)
Example #13
0
def clearPlastic():
    ### clear plastic
    global cPlasticSG
    cPlastic = mc.shadingNode('phong', asShader=True, n='cPlastic')
    cPlasticSG = mc.sets(r=True, nss=True, em=True, n='cPlasticSG')
    mc.connectAttr(cPlastic + '.outColor', cPlasticSG + '.surfaceShader')
    mc.setAttr(cPlastic + '.color', 0.0, 0.0, 0.0, type='double3')
    mc.setAttr(cPlastic + '.cosinePower', 20)
    mc.setAttr(cPlastic + '.specularColor', 2.0, 2.0, 2.0, type='double3')
    mc.setAttr(cPlastic + '.reflectivity', 0.5)
    mc.setAttr(cPlastic + '.transparency', 0.6, 0.6, 0.6, type='double3')
Example #14
0
 def createMaterial(name, color, type):
     cmds.sets(renderable=True,
               noSurfaceShader=True,
               empty=True,
               name=name + 'SG')
     cmds.shadingNode(type, asShader=True, name=name)
     cmds.setAttr(name + '.color',
                  color[0],
                  color[1],
                  color[2],
                  type='double3')
     cmds.connectAttr(name + '.outColor', name + 'SG.surfaceShader')
Example #15
0
def chrome():
    ### blue clear plastic
    global chromeSG
    chrome = mc.shadingNode('phong', asShader=True, n='chrome')
    chromeSG = mc.sets(r=True, nss=True, em=True, n='chromeSG')
    mc.connectAttr(chrome + '.outColor', chromeSG + '.surfaceShader')
    mc.setAttr(chrome + '.color', 0.0, 0.0, 0.0, type='double3')
    mc.setAttr(chrome + '.transparency', 0.0, 0.0, 0.0, type='double3')
    mc.setAttr(chrome + '.ambientColor', 1.0, 1.0, 1.0, type='double3')
    mc.setAttr(chrome + '.incandescence', 0.122, 0.122, 0.122, type='double3')
    mc.setAttr(chrome + '.cosinePower', 20)
    mc.setAttr(chrome + '.specularColor', 2.0, 2.0, 2.0, type='double3')
    mc.setAttr(chrome + '.reflectivity', 2.0)
Example #16
0
def shinyGold():
    ### gold
    global shinyGoldSG
    chrome = mc.shadingNode('blinn', asShader=True, n='shinyGold')
    shinyGoldSG = mc.sets(r=True, nss=True, em=True, n='ShinyGoldSG')
    mc.connectAttr(chrome + '.outColor', shinyGoldSG + '.surfaceShader')
    mc.setAttr(chrome + '.color', 0.75, 0.5, 0.12, type='double3')
    mc.setAttr(chrome + '.transparency', 0.0, 0.0, 0.0, type='double3')
    mc.setAttr(chrome + '.ambientColor', 0.75, 0.5, 0.12, type='double3')
    mc.setAttr(chrome + '.incandescence', 0.122, 0.122, 0.122, type='double3')
    #mc.setAttr(chrome+'.cosinePower', 20)
    mc.setAttr(chrome + '.specularColor', 0.75, 0.50, 0.12, type='double3')
    mc.setAttr(chrome + '.reflectivity', 2.0)
Example #17
0
def silver():
    ### silver
    global silverSG
    silver = mc.shadingNode('blinn', asShader=True, n='silver')
    silverSG = mc.sets(r=True, nss=True, em=True, n='silverSG')
    mc.connectAttr(silver + '.outColor', silverSG + '.surfaceShader')
    mc.setAttr(silver + '.color', 0.0, 0.0, 0.0, type='double3')
    mc.setAttr(silver + '.transparency', 0.0, 0.0, 0.0, type='double3')
    mc.setAttr(silver + '.ambientColor', 0.0, 0.0, 0.0, type='double3')
    mc.setAttr(silver + '.incandescence', 0.122, 0.122, 0.122, type='double3')
    #mc.setAttr(chrome+'.cosinePower', 20)
    mc.setAttr(silver + '.specularColor', 1.0, 1.0, 1.0, type='double3')
    mc.setAttr(silver + '.reflectivity', 2.0)
Example #18
0
    def createShader(self, shaderName, shaderType ='blinn'):
        shaderEngine = None
        if not cmds.objExists(shaderName):
            shader       = cmds.shadingNode(shaderType, asShader=True)
            shader       = cmds.rename(shader, shaderName)
            shaderEngine = cmds.sets(renderable=True, empty=True, noSurfaceShader=True, name=shader + '_SG')
            cmds.connectAttr(shader + '.outColor', shaderEngine + '.surfaceShader')
        else:
            shader  = shaderName
            engines = cmds.listConnections(shader + '.outColor')
            if engines:
                shaderEngine = engines[0]

        return shader, shaderEngine
Example #19
0
def sword():
    ### silver
    global swordSG
    sword = mc.shadingNode('blinn', asShader=True, n='sword')
    swordSG = mc.sets(r=True, nss=True, em=True, n='swordSG')
    mc.connectAttr(sword + '.outColor', swordSG + '.surfaceShader')
    mc.setAttr(sword + '.color', 1.0, 0.4, 0.7, type='double3')
    mc.setAttr(sword + '.transparency', 0.0, 0.0, 0.0, type='double3')
    mc.setAttr(sword + '.ambientColor', 0.0, 0.0, 0.0, type='double3')
    mc.setAttr(sword + '.incandescence', 0.0, 0.0, 0.0, type='double3')
    #mc.setAttr(chrome+'.cosinePower', 20)
    mc.setAttr(sword + '.specularColor', 0.5, 0.5, 0.5, type='double3')
    mc.setAttr(sword + '.reflectivity', 0.5)
    mc.setAttr(sword + '.eccentricity', 0.3)
    mc.setAttr(sword + '.glowIntensity', 1.0)
Example #20
0
    def build(cls):
        prints = cls.getTargets(2)
        if not prints or len(prints) < 2:
            return False

        prev = prints[0]
        for p in prints[1:]:
            if not cmds.attributeQuery(cls._PREVIOUS_PRINT_ATTR, node=p, exists=True):
                cmds.addAttr(longName=cls._PREVIOUS_PRINT_ATTR, attributeType='message')

            prevs = cls.getPrevious(p)
            if not prevs or prev not in prevs:
                cmds.connectAttr(prev + '.message', p + '.' + cls._PREVIOUS_PRINT_ATTR, force=True)

            prev = p

        return True
Example #21
0
 def __init__(self, name, r, g, b):
     ### blue clear plastic
     blueCPlastic = mc.shadingNode('phong', asShader=True, n='blueCPlastic')
     self.PlasticSG = mc.sets(r=True, nss=True, em=True, n='blueCPlasticSG')
     mc.connectAttr(blueCPlastic + '.outColor',
                    self.PlasticSG + '.surfaceShader')
     mc.setAttr(blueCPlastic + '.color', r, g, b, type='double3')
     mc.setAttr(blueCPlastic + '.cosinePower', 20)
     mc.setAttr(blueCPlastic + '.specularColor',
                2.0,
                2.0,
                2.0,
                type='double3')
     mc.setAttr(blueCPlastic + '.reflectivity', 0.5)
     mc.setAttr(blueCPlastic + '.transparency',
                0.6,
                0.6,
                0.6,
                type='double3')
Example #22
0
    def _createMeshPointNode(self, shapeData):
        self._removeMeshPointNode()

        try:
            node = cmds.createNode('closestPointOnMesh', skipSelect=True)
            self._meshPointNode = node
        except Exception as err:
            print(Logger.createErrorMessage(u'ERROR: Unable to create mesh point node', err))
            self._removeMeshPointNode()
            return False

        try:
            cmds.connectAttr(shapeData['name'] + '.message', node + '.inMesh', force=True)
        except Exception as err:
            print(Logger.createErrorMessage(u'ERROR: Unable to connect mesh point node to shape', err))
            self._removeMeshPointNode()
            return False

        return True
Example #23
0
    def _createMeshPointNode(self, shapeData):
        self._removeMeshPointNode()

        try:
            node = cmds.createNode('closestPointOnMesh', skipSelect=True)
            self._meshPointNode = node
        except Exception as err:
            print(Logger.createErrorMessage(u'ERROR: Unable to create mesh point node', err))
            self._removeMeshPointNode()
            return False

        try:
            cmds.connectAttr(shapeData['name'] + '.message', node + '.inMesh', force=True)
        except Exception as err:
            print(Logger.createErrorMessage(u'ERROR: Unable to connect mesh point node to shape', err))
            self._removeMeshPointNode()
            return False

        return True
Example #24
0
def npchrome():
    ### blue clear plastic
    global npchromeSG
    npchrome = mc.shadingNode('phong', asShader=True, n='npchrome')
    npchromeSG = mc.sets(r=True, nss=True, em=True, n='npchromeSG')
    mc.connectAttr(npchrome + '.outColor', npchromeSG + '.surfaceShader')
    mc.setAttr(npchrome + '.color', 0.0, 0.0, 0.0, type='double3')
    mc.setAttr(npchrome + '.transparency', 0.0, 0.0, 0.0, type='double3')
    mc.setAttr(npchrome + '.ambientColor', 1.0, 1.0, 1.0, type='double3')
    mc.setAttr(npchrome + '.incandescence',
               0.122,
               0.122,
               0.122,
               type='double3')
    mc.setAttr(npchrome + '.cosinePower', 20)
    mc.setAttr(npchrome + '.specularColor', 2.0, 2.0, 2.0, type='double3')
    mc.setAttr(npchrome + '.reflectivity', 2.0)
    #create water texture and link it
    texture = mc.shadingNode('water', at=True, n='chromeTex')
    chromePlaceTex = mc.shadingNode('place2dTexture',
                                    au=True,
                                    n='chromePlaceTex')
    mc.connectAttr(chromePlaceTex + '.outUV', texture + '.uv')
    mc.connectAttr(chromePlaceTex + '.outUvFilterSize',
                   texture + '.uvFilterSize')
    mc.defaultNavigation(ce=True, d=npchrome + '.normalCamera', s=texture)
    mc.setAttr(texture + '.alphaIsLuminance', True)
    #mc.connectAttr(texture+'.outAlpha', 'bump2d2.bumpValue', f=True )
    #mc.connectAttr('bump2d2.outNormal', npchrome+'.bumpValue', f=True )
    #set texture settings
    mc.setAttr(texture + '.numberOfWaves', 32)
    mc.setAttr(texture + '.waveTime', 1.0)
    mc.setAttr(texture + '.waveFrequency', 5.25)
Example #25
0
    def createToken(cls, uid, props, trackSetNode =None):
        """ A token is created, provided with some additional Maya attributes,
            and placed in the scene. Tokens are functtionally similar to
            TrackNodes, but with different shapes and attributes. """

        cylinderHeight = 5.0
        coneHeight     = 10.0

        if not trackSetNode:
            trackSetNode = TrackSceneUtils.getTrackSetNode()

        if not trackSetNode:
            return None

        node = cls.getTrackNode(uid, trackSetNode=trackSetNode)

        if node:
            return node

        # determine whether left or right, and manus or pes, from name
        name = props['name'] if props else None
        if not name:
            print('createToken:  No properties specified')
            return
        # remove '_proxy' or '_token' if present (as in S6_LP3_proxy)
        nameFields = cls.decomposeName(name.split('_')[0])
        isLeft     = nameFields['left']
        isPes      = nameFields['pes']

        # make a cone for the token of an proxy else a cylinder
        if uid.endswith('_proxy'):
            node = cmds.polyCone(
                radius=0.5,
                height=coneHeight,
                subdivisionsX=10,
                subdivisionsY=1,
                subdivisionsZ=1,
                axis=(0, 1, 0),
                createUVs=0,
                constructionHistory=0,
                name='Token_0')[0]
            cmds.move(0, 0.5 * coneHeight, 0)
        else:
            node = cmds.polyCylinder(
                radius=0.5,
                height=cylinderHeight,
                subdivisionsX=10,
                subdivisionsY=1,
                subdivisionsZ=1,
                subdivisionsCaps=0,
                axis=(0, 1, 0),
                createUVs=0,
                constructionHistory=0,
                name='Token_0')[0]
            cmds.move(0, 0.5 * cylinderHeight, 0)

        # Set up the basic cadence attributes
        cmds.addAttr(longName='cadence_dx', shortName='dx', niceName='DX')
        cmds.addAttr(longName='cadence_dy', shortName='dy', niceName='DY')

        cmds.addAttr(
             longName='cadence_uniqueId',
             shortName='track_uid',
             dataType='string',
             niceName='UID')

        cmds.addAttr(
             longName='cadence_name',
             shortName='token_name',
             dataType='string',
             niceName='Name')

        # Disable some transform attributes
        cmds.setAttr(node + '.rotateX',    lock=True)
        cmds.setAttr(node + '.rotateZ',    lock=True)
        cmds.setAttr(node + '.scaleY',     lock=True)
        cmds.setAttr(node + '.translateY', lock=True)

        # Scale the cylinder/cone in x and z to represent 'dy' and 'dx' in
        # centimeters. There is a change of coordinates between Maya (X, Z) and
        # the simulator (X, Y) space. For example, for the right manus:
        #    x = int(100*float(entry['rm_y']))
        #    z = int(100*float(entry['rm_x']))
        # and likewise for dx and dy.

        # the DX and DY attributes affect scaleZ and scaleX in the node
        cmds.connectAttr(node + '.dx', node + '.scaleZ')
        cmds.connectAttr(node + '.dy', node + '.scaleX')

        # add a short annotation based on the name
        annotation = cmds.annotate(node, text=cls.shortName(props['name']))
        cmds.select(annotation)
        aTransform = cmds.pickWalk(direction='up')[0]

        # control it's position by that of the node, so that it stays 15 cm
        # above the pes and 10 cm above the manus
        if isPes:
            cmds.move(0.0, 15.0, 0.0, aTransform)
        else:
            cmds.move(0.0, 10.0, 0.0, aTransform)

        cmds.connectAttr(node + '.translateX', aTransform + '.translateX')
        cmds.connectAttr(node + '.translateZ', aTransform + '.translateZ')

        # and make it non-selectable
        cmds.setAttr(aTransform + '.overrideEnabled', 1)
        cmds.setAttr(aTransform + '.overrideDisplayType', 2)
        cmds.rename(aTransform, "TokenAnnotation_0")

        if isPes:
            if isLeft:
                color = TrackwayShaderConfig.LEFT_PES_TOKEN_COLOR
            else:
                color = TrackwayShaderConfig.RIGHT_PES_TOKEN_COLOR
        else:
            if isLeft:
                color = TrackwayShaderConfig.LEFT_MANUS_TOKEN_COLOR
            else:
                color = TrackwayShaderConfig.RIGHT_MANUS_TOKEN_COLOR
        ShadingUtils.applyShader(color, node)

        cmds.select(node)
        # add the new node to the Cadence track set
        cmds.sets(node, add=trackSetNode)

        # finally, initialize all the properties from the dictionary props
        cls.setTokenProps(node, props)

        return node
Example #26
0
def simulate(numFlockers, numFrames, alignmentWeight, cohesionWeight,
             separationWeight, speed, distance, in3D):

    # Create the flock
    flock = Flock(alignmentWeight, cohesionWeight, separationWeight, speed,
                  distance)

    cmds.shadingNode('phong', asShader=True, name='Redwax')
    cmds.select('Redwax')
    cmds.sets(renderable=True,
              noSurfaceShader=True,
              empty=True,
              name='RedwaxSG')
    cmds.connectAttr('Redwax.outColor', 'RedwaxSG.surfaceShader', f=True)
    cmds.setAttr('Redwax.color', 1, 0, 0, type='double3')
    cmds.setAttr('Redwax.cosinePower', 5)
    cmds.setAttr('Redwax.reflectivity', 0)
    cmds.setAttr('Redwax.specularColor', 1, 1, 1, type='double3')

    cmds.shadingNode('blinn', asShader=True, name='Plastic')
    cmds.select('Plastic')
    cmds.sets(renderable=True,
              noSurfaceShader=True,
              empty=True,
              name='PlasticSG')
    cmds.connectAttr('Plastic.outColor', 'PlasticSG.surfaceShader', f=True)
    cmds.setAttr('Plastic.color', 0.9, 0.9, 0.9, type='double3')
    cmds.setAttr('Plastic.eccentricity', 0.55)
    cmds.setAttr('Plastic.specularRollOff', 1)
    cmds.setAttr('Plastic.diffuse', 0.9)

    cmds.directionalLight(rotation=(-90, 0, 0))

    cmds.polyPlane(name='base')
    cmds.setAttr('base.scaleX', 25)
    cmds.setAttr('base.scaleZ', 25)
    cmds.setAttr('base.translateY', -15)
    cmds.select('base')
    cmds.sets(e=True, forceElement='PlasticSG')

    for i in range(numFlockers):
        xVel = random.randint(-9, 9)
        yVel = random.randint(-9, 9)
        zVel = random.randint(-9, 9)
        xPos = random.randint(-100, 100)
        yPos = random.randint(-100, 100)
        zPos = random.randint(-100, 100)
        fname = 'f' + str(i)
        if (in3D):
            flock.addFlocker(xVel, yVel, zVel, xPos, yPos, zPos, fname)
        else:
            flock.addFlocker(xVel, 0, zVel, xPos, 0, zPos, fname)

        cmds.polySphere(name=fname, radius=0.2)
        cmds.select(fname)
        cmds.sets(e=True, forceElement='RedwaxSG')

    # Initialize time
    time = 0
    endTime = numFrames
    cmds.currentTime(time)

    # Initialize flock member positions
    for flocker in flock.flockers:
        cmds.select(flocker.name)
        cmds.move(flocker.xPos, flocker.yPos, flocker.zPos)
        cmds.setKeyframe(flocker.name)

    while time < endTime:

        time += 12

        for flocker in flock.flockers:
            flocker.updateVelocity(flock)

        for flocker in flock.flockers:
            flocker.updatePostion()

        cmds.currentTime(time)
        for flocker in flock.flockers:
            fx = flocker.name + '.translateX'
            fy = flocker.name + '.translateY'
            fz = flocker.name + '.translateZ'
            cmds.setAttr(fx, flocker.xPos)
            cmds.setAttr(fy, flocker.yPos)
            cmds.setAttr(fz, flocker.zPos)
            cmds.setKeyframe(flocker.name)
Example #27
0
    def createTrackNode(cls, uid, trackSetNode =None, props =None):
        """ A track node consists of a triangular pointer (left = red, right =
            green) which is selectable but only allows rotateY, translateX, and
            translateZ. The node has a child, a transform called inverter, which
            serves to counteract the scaling in x and z that is applied to the
            triangular node.  There are two orthogonal rulers (width and
            length).  Width and length uncertainty is represented by rectangular
            bars at the ends of the rulers.  In Maya one can directly adjust
            track position (translateX and translateZ) and orientation
            (rotationY); other attributes are adjusted only through the UI. """

        if not trackSetNode:
            trackSetNode = TrackSceneUtils.getTrackSetNode()

        if not trackSetNode:
            return None

        node = cls.getTrackNode(uid, trackSetNode=trackSetNode)
        if node:
            return node

        # Set up dimensional constants for the track node
        nodeThickness  = 1.0
        thetaBreadth   = 0.1
        thetaThickness = 0.5
        barBreadth     = 2.0
        barThickness   = 0.5
        rulerBreadth   = 1.0
        rulerThickness = 0.25
        epsilon        = 1.0

        # Create an isoceles triangle pointer, with base aligned with X, and
        # scaled by node.width.  The midpoint of the base is centered on the
        # 'track center' and the altitude extends from that center of the track
        # 'anteriorly' to the perimeter of the track's profile (if present, else
        # estimated).  The node is scaled longitudinally (in z) based on the
        # distance zN (the 'anterior' length of the track, in cm).  The triangle
        # is initially 1 cm on a side.
        sideLength = 1.0
        node = cmds.polyPrism(
            length=nodeThickness,
            sideLength=sideLength,
            numberOfSides=3,
            subdivisionsHeight=1,
            subdivisionsCaps=0,
            axis=(0, 1, 0),
            createUVs=0,
            constructionHistory=0,
            name='Track0')[0]

        # Point the triangle down the +Z axis
        cmds.rotate(0.0, -90.0, 0.0)

        # push it down below ground level so that the two rulers are just
        # submerged, and scale the triangle in Z to match its width (1 cm) so it
        # is ready to be scaled
        cmds.move(0, -(nodeThickness/2.0 + rulerThickness), math.sqrt(3.0)/6.0)

        # move the node's pivot to the 'base' of the triangle so it scales
        # outward from that point
        cmds.move(
            0, 0, 0, node + ".scalePivot", node + ".rotatePivot", absolute=True)
        cmds.scale(2.0/math.sqrt(3.0), 1.0, 100.0)
        cmds.makeIdentity(
            apply=True,
            translate=True,
            rotate=True,
            scale=True,
            normal=False)

        # Set up the cadence attributes
        cmds.addAttr(
             longName='cadence_width',
             shortName=TrackPropEnum.WIDTH.maya,
             niceName='Width')
        cmds.addAttr(
             longName='cadence_widthUncertainty',
             shortName=TrackPropEnum.WIDTH_UNCERTAINTY.maya,
             niceName='Width Uncertainty')
        cmds.addAttr(
             longName='cadence_length',
             shortName=TrackPropEnum.LENGTH.maya,
             niceName='Length')
        cmds.addAttr(
             longName='cadence_lengthUncertainty',
             shortName=TrackPropEnum.LENGTH_UNCERTAINTY.maya,
             niceName='Length Uncertainty')
        cmds.addAttr(
             longName='cadence_lengthRatio',
             shortName=TrackPropEnum.LENGTH_RATIO.maya,
             niceName='Length Ratio')
        cmds.addAttr(
             longName='cadence_rotationUncertainty',
             shortName=TrackPropEnum.ROTATION_UNCERTAINTY.maya,
             niceName='Rotation Uncertainty')
        cmds.addAttr(
             longName='cadence_uniqueId',
             shortName=TrackPropEnum.UID.maya,
             dataType='string',
             niceName='Unique ID')

        # Construct a ruler representing track width, then push it down just
        # below ground level, and ake it non-selectable.  Drive its scale by the
        # node's width attribute.
        widthRuler = cmds.polyCube(
            axis=(0, 1, 0),
            width=100.0,
            height=rulerThickness,
            depth=rulerBreadth,
            subdivisionsX=1,
            subdivisionsY=1,
            createUVs=0,
            constructionHistory=0,
            name='WidthRuler')[0]

        # Push it down to just rest on the triangular node (which is already
        # submerged by the thickness of the ruler and half the node thickness.
        cmds.move(0.0, -rulerThickness/2.0, 0.0)
        cmds.setAttr(widthRuler + '.overrideEnabled', 1)
        cmds.setAttr(widthRuler + '.overrideDisplayType', 2)

        # Construct a ruler representing track length and push it down the same
        # as the width ruler, and make it non-selectable.  Its length will be
        # driven by the node's length attribute.
        lengthRuler = cmds.polyCube(
            axis=(0, 1, 0),
            width=rulerBreadth,
            height=rulerThickness,
            depth=100.0,
            subdivisionsX=1,
            subdivisionsY=1,
            createUVs=0,
            constructionHistory=0,
            name='LengthRuler')[0]
        cmds.move(0.0, -rulerThickness/2.0, 0.0)
        cmds.setAttr(lengthRuler + '.overrideEnabled', 1)
        cmds.setAttr(lengthRuler + '.overrideDisplayType', 2)

        # Now construct 'error bars' to the North, South, West, and East of the
        # node, to visualize uncertainty in width (West and East bars) and
        # length (North and South bars), and push them just below ground level,
        # and make them non-selectable.
        barN = cmds.polyCube(
            axis=(0,1,0),
            width=barBreadth,
            height=barThickness,
            depth=100.0,
            subdivisionsX=1,
            subdivisionsY=1,
            createUVs=0,
            constructionHistory=0,
            name='BarN')[0]
        cmds.move(0, -(barThickness/2 + rulerThickness), 0)
        cmds.setAttr(barN + '.overrideEnabled', 1)
        cmds.setAttr(barN + '.overrideDisplayType', 2)

        barS = cmds.polyCube(
            axis=(0, 1, 0),
            width=barBreadth,
            height=barThickness,
            depth=100.0,
            subdivisionsX=1,
            subdivisionsY=1,
            createUVs=0,
            constructionHistory=0,
            name='BarS')[0]
        cmds.move(0, -(barThickness/2 + rulerThickness), 0)
        cmds.setAttr(barS + '.overrideEnabled', 1)
        cmds.setAttr(barS + '.overrideDisplayType', 2)

        barW = cmds.polyCube(
            axis=(0, 1, 0),
            width=100.0,
            height=barThickness,
            depth=barBreadth,
            subdivisionsX=1,
            subdivisionsY=1,
            createUVs=0,
            constructionHistory=0,
            name='BarW')[0]
        cmds.move(0, -(barThickness/2 + rulerThickness), 0)
        cmds.setAttr(barW + '.overrideEnabled', 1)
        cmds.setAttr(barW + '.overrideDisplayType', 2)

        barE = cmds.polyCube(
            axis=(0, 1, 0),
            width=100.0,
            height=barThickness,
            depth=barBreadth,
            subdivisionsX=1,
            subdivisionsY=1,
            createUVs=0,
            constructionHistory=0,
            name='BarE')[0]
        cmds.move(0, -(barThickness/2 + rulerThickness), 0)
        cmds.setAttr(barE + '.overrideEnabled', 1)
        cmds.setAttr(barE + '.overrideDisplayType', 2)

        # Create two diverging lines that indicate rotation uncertainty (plus
        # and minus), with their pivots placed so they extend from the node
        # center, and each is made non-selectable.  First make the indicator of
        # maximum (counterclockwise) estimated track rotation
        thetaPlus = cmds.polyCube(
            axis=(0, 1, 0),
            width=thetaBreadth,
            height=thetaThickness,
            depth=1.0,
            subdivisionsX=1,
            subdivisionsY=1,
            createUVs=0,
            constructionHistory=0,
            name='ThetaPlus')[0]
        cmds.setAttr(thetaPlus + '.overrideEnabled',     1)
        cmds.setAttr(thetaPlus + '.overrideDisplayType', 2)

        # Next, construct the indicator of the minimum (clockwise) estimate of
        # track rotation
        thetaMinus = cmds.polyCube(
            axis=(0, 1, 0),
            width=thetaBreadth,
            height=thetaThickness,
            depth=1.0,
            subdivisionsX=1,
            subdivisionsY=1,
            createUVs=0,
            constructionHistory=0,
            name='ThetaMinus')[0]
        cmds.setAttr(thetaMinus + '.overrideEnabled',     1)
        cmds.setAttr(thetaMinus + '.overrideDisplayType', 2)

        # The two width 'error bars' will be translated outward from the node
        # center.  First, the width attribute is converted from meters (as it
        # comes from the database) to centimeters; the computation is available
        # in the output of the node 'width'.
        width = cmds.createNode('multiplyDivide', name='width')
        cmds.setAttr(width + '.operation', 1)
        cmds.setAttr(width + '.input1X', 100.0)
        cmds.connectAttr(
            node + '.' + TrackPropEnum.WIDTH.maya, width + '.input2X')

        # Translate barW in x by width/2.0; output is in xW.outputX
        xW = cmds.createNode('multiplyDivide', name = 'xW')
        cmds.setAttr(xW + '.operation', 2)
        cmds.connectAttr(width + '.outputX', xW + '.input1X')
        cmds.setAttr(xW + '.input2X', 2.0)
        cmds.connectAttr(xW + '.outputX', barW + '.translateX')

        # Translate barE in x by -width/2.0; output is in xE.outputX
        xE = cmds.createNode('multiplyDivide', name = 'xE')
        cmds.setAttr(xE + '.operation', 2) # division operation
        cmds.connectAttr(width + '.outputX', xE + '.input1X')
        cmds.setAttr(xE + '.input2X', -2.0)
        cmds.connectAttr(xE + '.outputX', barE + '.translateX')

        # Now regarding length, first convert the node.length attribute from
        # meters to centimeters. This computation is available in the output of
        # the node 'length'
        length = cmds.createNode('multiplyDivide', name='length')
        cmds.setAttr(length + '.operation', 1)
        cmds.setAttr(length + '.input1X', 100.0)
        cmds.connectAttr(
            node + '.' + TrackPropEnum.LENGTH.maya, length + '.input2X')

        # scale thetaPlus and thetaMinus by length (since they are 1 cm,
        # multiply by length in cm)
        cmds.connectAttr(length + '.outputX', thetaPlus  + '.scaleZ')
        cmds.connectAttr(length + '.outputX', thetaMinus + '.scaleZ')

        # Then barN is translated forward in z by zN = lengthRatio*length
        # (centimeters)
        zN = cmds.createNode('multiplyDivide', name='zN')
        cmds.setAttr(zN + '.operation', 1)
        cmds.connectAttr(
            node + '.' + TrackPropEnum.LENGTH_RATIO.maya, zN + '.input1X')
        cmds.connectAttr(length + '.outputX',  zN + '.input2X')
        cmds.connectAttr(zN + '.outputX', barN + '.translateZ')

        # Next, translate barS backward in z by (zN - length); output is in
        # zS.output1D
        zS = cmds.createNode('plusMinusAverage', name='sZ')
        cmds.setAttr(zS + '.operation', 2)
        cmds.connectAttr(zN + '.outputX',     zS + '.input1D[0]')
        cmds.connectAttr(length + '.outputX', zS + '.input1D[1]')
        cmds.connectAttr(zS + '.output1D',    barS + '.translateZ')

        # Next, compute the half length, hl = length/2.0 (centimeters)
        hl = cmds.createNode('multiplyDivide', name='hl')
        cmds.setAttr(hl + '.operation', 2)
        cmds.connectAttr(length + '.outputX', hl + '.input1X')
        cmds.setAttr(hl + '.input2X', 2.0)

        # Translate lengthRuler along z by zL = (zN - hl) (centimeters)
        zL = cmds.createNode('plusMinusAverage', name='zL')
        cmds.setAttr(zL + '.operation', 2)
        cmds.connectAttr(zN + '.outputX',  zL + '.input1D[0]')
        cmds.connectAttr(hl + '.outputX',  zL + '.input1D[1]')
        cmds.connectAttr(zL + '.output1D', lengthRuler + '.translateZ')

        # Scale the four 'error bars' to represent the width and length
        # uncertainties (centimeters)
        cmds.connectAttr(
            node + "." + TrackPropEnum.WIDTH_UNCERTAINTY.maya,
            barW + '.scaleX')
        cmds.connectAttr(
            node + "." + TrackPropEnum.WIDTH_UNCERTAINTY.maya,
            barE + '.scaleX')
        cmds.connectAttr(
            node + "." + TrackPropEnum.LENGTH_UNCERTAINTY.maya,
            barN + '.scaleZ')
        cmds.connectAttr(
            node + "." + TrackPropEnum.LENGTH_UNCERTAINTY.maya,
            barS + '.scaleZ')

        # Create an 'inverter' transform under which all the other parts are
        # hung as children, which counteracts scaling applied to its parent
        # triangular node.
        inverter = cmds.createNode('transform', name='inverter')

        # drive the inverter's .scaleX and .scaleZ as the inverse of the parent
        # node's scale values
        sx = cmds.createNode('multiplyDivide', name='sx')
        cmds.setAttr(sx + '.operation', 2)
        cmds.setAttr(sx + '.input1X', 1.0)
        cmds.connectAttr(node + '.scaleX', sx + '.input2X')
        cmds.connectAttr(sx + '.outputX', inverter + '.scaleX')

        sz = cmds.createNode('multiplyDivide', name='sz')
        cmds.setAttr(sz + '.operation', 2)
        cmds.setAttr(sz + '.input1X', 1.0)
        cmds.connectAttr(node + '.scaleZ', sz + '.input2X')
        cmds.connectAttr(sz + '.outputX', inverter + '.scaleZ')

        # Assemble the parts as children under the scale inverter node
        cmds.parent(lengthRuler, inverter)
        cmds.parent(widthRuler,  inverter)
        cmds.parent(barN,        inverter)
        cmds.parent(barS,        inverter)
        cmds.parent(barW,        inverter)
        cmds.parent(barE,        inverter)
        cmds.parent(thetaPlus,   inverter)
        cmds.parent(thetaMinus,  inverter)
        cmds.parent(inverter,    node)

        # Rotate thetaPlus and thetaMinus about the Y axis to indicate
        # rotational uncertainty
        cmds.connectAttr(
            node + '.' + TrackPropEnum.ROTATION_UNCERTAINTY.maya,
            node + '|' + inverter + '|' + thetaPlus + '.rotateY')

        neg = cmds.createNode('multiplyDivide', name='negative')
        cmds.setAttr(neg + '.operation', 1)
        cmds.setAttr(neg + '.input1X',  -1.0)
        cmds.connectAttr(
            node + '.' + TrackPropEnum.ROTATION_UNCERTAINTY.maya,
            neg + '.input2X')
        cmds.connectAttr(
            neg + '.outputX',
            node + '|' + inverter + '|' + thetaMinus + '.rotateY')

        # Disable some transforms of the node
        cmds.setAttr(node + '.rotateX',    lock=True)
        cmds.setAttr(node + '.rotateZ',    lock=True)
        cmds.setAttr(node + '.scaleY',     lock=True)
        cmds.setAttr(node + '.translateY', lock=True)

        # Now, the width of the triangle will be driven by its width attribute
        # (driving .scaleX)
        cmds.connectAttr(node + '.width',  node + '.scaleX')

        # The quantity zN is used to scale length of the triangle
        cmds.connectAttr(zN + '.outputX',  node + '.scaleZ')

        # Scale the 'length' (in x) of the width ruler
        cmds.connectAttr(
            node + '.width',  node + '|' + inverter + '|WidthRuler.scaleX')

        # Scale the length of the length ruler
        cmds.connectAttr(
            node + '.length', node + '|' + inverter + '|LengthRuler.scaleZ')

        # Translate the track node epsilon below ground level (to reveal the
        # overlaid track siteMap)
        cmds.move(0, -epsilon, 0, node)

        # Initialize all the properties from the dictionary
        if props:
            cls.setTrackProps(node, props)
        else:
            print('in createTrackNode:  properties not provided')
            return node

        # Add the new nodeName to the Cadence track scene set, color it, and
        # we're done
        cmds.sets(node, add=trackSetNode)
        cls.colorTrackNode(node, props)
        return node
 def createMaterial( name, color, type ):
     cmds.sets( renderable=True, noSurfaceShader=True, empty=True, name=name + 'SG' )
     cmds.shadingNode( type, asShader=True, name=name )
     cmds.setAttr( name+'.color', color[0], color[1], color[2], type='double3')
     cmds.connectAttr(name+'.outColor', name+'SG.surfaceShader')
Example #29
0
    def _handleExample1Button(self):
        """
        This callback creates a polygonal cylinder in the Maya scene.


        r = 50
        a = 2.0*r
        y = (0, 1, 0)
        c = cmds.polyCylinder(
            r=r, h=5, sx=40, sy=1, sz=1, ax=y, rcp=0, cuv=2, ch=1, n='exampleCylinder')[0]
        cmds.select(c)
        response = nimble.createRemoteResponse(globals())
        response.put('name', c)
        """

        cmds.select(allDagObjects=True)
        cmds.pointLight(rgb=(1, 1, 0.5))
        cmds.move(-10, 15, 14)
        cmds.pointLight(rgb=(1, 0.1, 0.2))
        cmds.move(-8, 15, -10)
        cmds.pointLight(rgb=(1, 0.1, 0.2))
        cmds.move(-12, 15, 3)

        material = str(self.comboBox.currentText())
        object3 = str(self.comboBox_2.currentText())
        print material
        array = ['plastic1', 'plastic2', 'red', 'gold', 'silver', 'bronze']
        object = ['captain', 'soldiers', 'carpet']
        print array
        # material 1
        #plastic1 = "plastic1"
        plastic1 = cmds.shadingNode('blinn', asShader=True)
        cmds.setAttr("%s.color" % plastic1, 0.95, 0.95, 0.95, type="double3")
        cmds.setAttr("%s.incandescence" % plastic1,
                     0.5,
                     0.5,
                     0.5,
                     type="double3")
        #cmds.setAttr("%s.transparency" % plastic1, 0.75, 0.75, 0.75, type="double3")
        #cmds.setAttr("%s.incandescence" % plastic1,0.5, 0.5, 0.5, type="double3")

        # material 2

        plastic2 = cmds.shadingNode('lambert', asShader=True)
        cmds.sets(name="%sSG" % plastic2,
                  renderable=True,
                  noSurfaceShader=True,
                  empty=True)
        cmds.connectAttr("%s.outColor" % plastic2,
                         "%sSG.surfaceShader" % plastic2)
        cmds.setAttr("%s.color" % plastic2, 0.1, 1.0, 0.2, type="double3")
        #cmds.setAttr("%s.transparency" % plastic2,0.75, 0.75, 0.75, type="double3")
        cmds.setAttr("%s.incandescence" % plastic2,
                     0.5,
                     0.5,
                     0.5,
                     type="double3")

        # material 3
        red = cmds.shadingNode('blinn', asShader=True)
        cmds.setAttr("%s.color" % red, 1.0, 0.1, 0.1, type="double3")
        #cmds.setAttr("%s.transparency" % plastic1, 0.75, 0.75, 0.75, type="double3")
        #cmds.setAttr("%s.incandescence" % plastic1,0.5, 0.5, 0.5, type="double3")

        # material 4
        #metal1 = 'metal1'
        gold = cmds.shadingNode('blinn', asShader=True)
        cmds.setAttr("%s.color" % gold, 1.0, 0.8, 0.0, type="double3")

        # material 5
        silver = cmds.shadingNode('blinn', asShader=True)
        #cmds.setAttr("%s.color" % silver, 0.75, 075, 0.75, type="double3")
        cmds.setAttr("%s.color" % silver, 0.9, 0.9, 1.0, type="double3")

        # material 6
        bronze = cmds.shadingNode('blinn', asShader=True)
        cmds.setAttr("%s.color" % bronze, 0.8, 0.5, 0.2, type="double3")

        cmds.select(object3)
        if (material == array[0]):
            cmds.hyperShade(assign=plastic1)
        elif (material == array[1]):
            cmds.hyperShade(assign=plastic2)
        elif (material == array[2]):
            cmds.hyperShade(assign=red)
        elif (material == array[3]):
            cmds.hyperShade(assign=gold)
        elif (material == array[4]):
            cmds.hyperShade(assign=silver)
        elif (material == array[5]):
            cmds.hyperShade(assign=bronze)