def _extract_zero_and_first_stats(X, sad, indices, gmm, z_path, f_path, name_path): n_samples = X.shape[0] # indices is None, every row is single sample (utterance or image ...) if indices is None: if os.path.exists(z_path): os.remove(z_path) if os.path.exists(f_path): os.remove(f_path) Z = MmapArrayWriter(path=z_path, dtype='float32', shape=(n_samples, gmm.nmix), remove_exist=True) F = MmapArrayWriter(path=f_path, dtype='float32', shape=(n_samples, gmm.feat_dim * gmm.nmix), remove_exist=True) jobs, _ = _split_jobs(n_samples, ncpu=mpi.cpu_count(), device='cpu', gpu_factor=1) def map_transform(start_end): start, end = start_end for i in range(start, end): # removed by SAD if sad is not None and not bool(sad[i]): yield None, None, None else: z, f = gmm.transform(X[i][np.newaxis, :], zero=True, first=True, device='cpu') yield i, z, f prog = Progbar(target=n_samples, print_report=True, print_summary=False, name="Extracting zero and first order statistics") for i, z, f in mpi.MPI(jobs, map_transform, ncpu=None, batch=1): if i is not None: # i None means removed by SAD Z[i] = z F[i] = f prog.add(1) Z.flush() F.flush() Z.close() F.close() # use directly the transform_to_disk function else: gmm.transform_to_disk(X, indices=indices, sad=sad, pathZ=z_path, pathF=f_path, name_path=name_path, dtype='float32', device=None, ncpu=None, override=True)
def _extract_zero_and_first_stats(X, sad, indices, gmm, z_path, f_path, name_path): n_samples = X.shape[0] # indices is None, every row is single sample (utterance or image ...) if indices is None: if os.path.exists(z_path): os.remove(z_path) if os.path.exists(f_path): os.remove(f_path) Z = MmapData(path=z_path, dtype='float32', shape=(n_samples, gmm.nmix), read_only=False) F = MmapData(path=f_path, dtype='float32', shape=(n_samples, gmm.feat_dim * gmm.nmix), read_only=False) jobs, _ = _split_jobs(n_samples, ncpu=mpi.cpu_count(), device='cpu', gpu_factor=1) def map_transform(start_end): start, end = start_end for i in range(start, end): # removed by SAD if sad is not None and not bool(sad[i]): yield None, None, None else: z, f = gmm.transform(X[i][np.newaxis, :], zero=True, first=True, device='cpu') yield i, z, f prog = Progbar(target=n_samples, print_report=True, print_summary=False, name="Extracting zero and first order statistics") for i, z, f in mpi.MPI(jobs, map_transform, ncpu=None, batch=1): if i is not None: # i None means removed by SAD Z[i] = z F[i] = f prog.add(1) Z.flush(); Z.close() F.flush(); F.close() # use directly the transform_to_disk function else: gmm.transform_to_disk(X, indices=indices, sad=sad, pathZ=z_path, pathF=f_path, name_path=name_path, dtype='float32', device=None, ncpu=None, override=True)
with np.warnings.catch_warnings(): np.warnings.filterwarnings('ignore') for path, name in SAMPLED_WAV_FILE: feat = recipe.transform(path) assert feat['bnf'].shape[0] == feat['mspec'].shape[0] V.plot_multiple_features(feat, title=feat['name']) V.plot_save(os.path.join(PATH_EXP, 'features_%s.pdf' % args.recipe)) exit() # =========================================================================== # Prepare the processor # =========================================================================== with np.warnings.catch_warnings(): np.warnings.filterwarnings('ignore') jobs = list(WAV_FILES.keys()) processor = pp.FeatureProcessor( jobs=jobs, path=os.path.join(PATH_ACOUSTIC_FEAT, args.recipe), extractor=recipe, n_cache=1200, ncpu=min(18, cpu_count() - 2), override=True, identifier='name', log_path=os.path.join(PATH_EXP, 'processor_%s.log' % args.recipe), stop_on_failure=False) processor.run() pp.validate_features(processor, nb_samples=12, path=os.path.join(PATH_EXP, args.recipe), override=True)
# ====== debugging ====== # if DEBUG: with np.warnings.catch_warnings(): np.warnings.filterwarnings('ignore') for path, name in SAMPLED_WAV_FILE: feat = recipe.transform(path) assert feat['bnf'].shape[0] == feat['mspec'].shape[0] V.plot_multiple_features(feat, title=feat['name']) V.plot_save(os.path.join(PATH_EXP, 'features_%s.pdf' % args.recipe)) exit() # =========================================================================== # Prepare the processor # =========================================================================== with np.warnings.catch_warnings(): np.warnings.filterwarnings('ignore') jobs = list(WAV_FILES.keys()) processor = pp.FeatureProcessor(jobs=jobs, path=os.path.join(PATH_ACOUSTIC_FEAT, args.recipe), extractor=recipe, n_cache=1200, ncpu=min(18, cpu_count() - 2), override=True, identifier='name', log_path=os.path.join(PATH_EXP, 'processor_%s.log' % args.recipe), stop_on_failure=False) processor.run() pp.validate_features(processor, nb_samples=12, path=os.path.join(PATH_EXP, args.recipe), override=True)
def fast_tsne(*X, n_components=2, n_samples=None, perplexity=30.0, early_exaggeration=8.0, learning_rate=200.0, n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-7, metric="euclidean", init="random", verbose=0, random_state=1234, method='barnes_hut', angle=0.5, n_jobs=4): """ Parameters ---------- n_components : int, optional (default: 2) Dimension of the embedded space. n_samples : {int, None} if given, downsampling the data to given number of sample perplexity : float, optional (default: 30) The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter. early_exaggeration : float, optional (default: 8.0) Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. learning_rate : float, optional (default: 200.0) The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data may look like a 'ball' with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. If the cost function gets stuck in a bad local minimum increasing the learning rate may help. n_iter : int, optional (default: 1000) Maximum number of iterations for the optimization. Should be at least 250. n_iter_without_progress : int, optional (default: 300) Maximum number of iterations without progress before we abort the optimization, used after 250 initial iterations with early exaggeration. Note that progress is only checked every 50 iterations so this value is rounded to the next multiple of 50. min_grad_norm : float, optional (default: 1e-7) If the gradient norm is below this threshold, the optimization will be stopped. metric : string or callable, optional The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. The default is "euclidean" which is interpreted as squared euclidean distance. init : string or numpy array, optional (default: "random") Initialization of embedding. Possible options are 'random', 'pca', and a numpy array of shape (n_samples, n_components). PCA initialization cannot be used with precomputed distances and is usually more globally stable than random initialization. verbose : int, optional (default: 0) Verbosity level. random_state : int, RandomState instance or None, optional (default: None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Note that different initializations might result in different local minima of the cost function. method : string (default: 'barnes_hut') By default the gradient calculation algorithm uses Barnes-Hut approximation running in O(NlogN) time. method='exact' will run on the slower, but exact, algorithm in O(N^2) time. The exact algorithm should be used when nearest-neighbor errors need to be better than 3%. However, the exact method cannot scale to millions of examples. angle : float (default: 0.5) Only used if method='barnes_hut' This is the trade-off between speed and accuracy for Barnes-Hut T-SNE. 'angle' is the angular size (referred to as theta in [3]) of a distant node as measured from a point. If this size is below 'angle' then it is used as a summary node of all points contained within it. This method is not very sensitive to changes in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing computation time and angle greater 0.8 has quickly increasing error. """ assert len(X) > 0, "No input is given!" if isinstance(X[0], (tuple, list)): X = X[0] if not all(isinstance(x, np.ndarray) for x in X): raise ValueError( "`X` can only be list of numpy.ndarray or numpy.ndarray") # ====== kwarg for creating T-SNE class ====== # kwargs = dict(locals()) del kwargs['X'] n_samples = kwargs.pop('n_samples', None) # ====== downsampling ====== # if n_samples is not None: n_samples = int(n_samples) assert n_samples > 0 new_X = [] rand = random_state if isinstance(random_state, np.random.RandomState) else \ np.random.RandomState(seed=random_state) for x in X: if x.shape[0] > n_samples: ids = rand.permutation(x.shape[0])[:n_samples] x = x[ids] new_X.append(x) X = new_X # ====== import proper T-SNE ====== # tsne_version = None try: from tsnecuda import TSNE from tsnecuda.NaiveTSNE import NaiveTSNE as _exact_TSNE tsne_version = 'cuda' except ImportError: # wprint("Install CUDA-TSNE from `https://github.com/CannyLab/tsne-cuda` " # "for significant speed up.") try: from MulticoreTSNE import MulticoreTSNE as TSNE tsne_version = 'multicore' except ImportError: wprint( "Install MulticoreTSNE from `pip install git+https://github.com/DmitryUlyanov/Multicore-TSNE.git`" ' to accelerate the T-SNE on multiple CPU cores.') try: from sklearn.manifold import TSNE tsne_version = 'sklearn' except Exception as e: raise e # ====== modify kwargs ====== # if tsne_version == 'cuda': kwargs['random_seed'] = kwargs['random_state'] kwargs['theta'] = angle if method == 'exact': TSNE = _exact_TSNE del kwargs['theta'] del kwargs['random_state'] del kwargs['n_jobs'] del kwargs['angle'] del kwargs['method'] elif tsne_version == 'multicore': pass else: del kwargs['n_jobs'] # ====== getting cached values ====== # results = [] X_new = [] for i, x in enumerate(X): md5 = md5_checksum(x) key = _create_key(kwargs, md5) if key in _cached_values: results.append((i, _cached_values[key])) else: X_new.append((i, md5, x)) # ====== perform T-SNE ====== # def apply_tsne(j): idx, md5, x = j tsne = TSNE(**kwargs) return (idx, md5, tsne.fit_transform(x)) # only 1 X, no need for MPI if len(X_new) == 1: idx, md5, x = apply_tsne(X_new[0]) results.append((idx, x)) _cached_values[_create_key(kwargs, md5)] = x else: mpi = MPI(jobs=X_new, func=apply_tsne, batch=1, ncpu=min(len(X_new), cpu_count() - 1)) for idx, md5, x in mpi: results.append((idx, x)) _cached_values[_create_key(kwargs, md5)] = x # ====== return and clean ====== # results = sorted(results, key=lambda a: a[0]) results = [r[1] for r in results] return results[0] if len(results) == 1 else results
] # ====== DNN ====== # BATCH_SIZE = int(_args.batch) EPOCH = int(_args.epoch) LEARNING_RATE = float(_args.lr) GRADIENT_CLIPPING = float(_args.clip) # ====== searching for the appropriate system ====== # SCORE_SYSTEM_NAME = _args.sys SCORE_SYSTEM_ID = int(_args.sysid) N_LDA = int(_args.lda) N_PLDA = int(_args.plda) assert N_PLDA > 0, "Number of PLDA components must > 0, but given: %d" % N_PLDA PLDA_MAXIMUM_LIKELIHOOD = bool(_args.mll) PLDA_SHOW_LLK = bool(_args.showllk) # ====== system ====== # NCPU = min(18, mpi.cpu_count() - 2) if _args.ncpu <= 0 else int(_args.ncpu) # ====== helper for checking the requirement ====== # def _check_feature_extraction_requirement(): # check requirement for feature extraction from shutil import which if which('sox') is None: raise RuntimeError("`sox` was not installed") if which('sph2pipe') is None: raise RuntimeError("`sph2pipe` was not installed") if which('ffmpeg') is None: raise RuntimeError("`ffmpeg` was not installed") def _check_recipe_name_for_extraction():
print(tmp) exit() else: V.plot_multiple_features(tmp, title=name) V.plot_save(os.path.join(PATH_EXP, 'feature_debug.pdf')) exit() # =========================================================================== # Processor # =========================================================================== with np.warnings.catch_warnings(): np.warnings.filterwarnings('ignore') processor = pp.FeatureProcessor(jobs=all_files, path=PATH_ACOUSTIC, extractor=extractors, n_cache=0.12, ncpu =min(18, cpu_count() - 2) if args.ncpu <= 0 else int(args.ncpu), override=True, identifier='name', log_path=os.path.join(PATH_EXP, 'processor.log'), stop_on_failure=True # small dataset, enable stop on failure ) with UnitTimer(): processor.run() n_error = len(processor.error_log) print(processor) # ====== copy readme and check the preprocessed dataset ====== # if n_error == 0: readme_path = os.path.join(audio.path, [i for i in os.listdir(audio.path) if 'README' in i][0]) shutil.copy(readme_path, os.path.join(PATH_ACOUSTIC, 'README.md'))
else: V.plot_multiple_features(tmp, title=name) V.plot_save(os.path.join(PATH_EXP, 'feature_debug.pdf')) exit() # =========================================================================== # Processor # =========================================================================== with np.warnings.catch_warnings(): np.warnings.filterwarnings('ignore') processor = pp.FeatureProcessor( jobs=all_files, path=PATH_ACOUSTIC, extractor=extractors, n_cache=0.12, ncpu=min(18, cpu_count() - 2) if args.ncpu <= 0 else int(args.ncpu), override=True, identifier='name', log_path=os.path.join(PATH_EXP, 'processor.log'), stop_on_failure=True # small dataset, enable stop on failure ) with UnitTimer(): processor.run() n_error = len(processor.error_log) print(processor) # ====== copy readme and check the preprocessed dataset ====== # if n_error == 0: readme_path = os.path.join( audio.path, [i for i in os.listdir(audio.path) if 'README' in i][0]) shutil.copy(readme_path, os.path.join(PATH_ACOUSTIC, 'README.md'))
def fast_tsne(*X, n_components=2, n_samples=None, perplexity=30.0, early_exaggeration=8.0, learning_rate=200.0, n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-7, metric="euclidean", init="random", verbose=0, random_state=5218, method='barnes_hut', angle=0.5, n_jobs=4): """ Parameters ---------- n_components : int, optional (default: 2) Dimension of the embedded space. n_samples : {int, None} if given, downsampling the data to given number of sample perplexity : float, optional (default: 30) The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter. early_exaggeration : float, optional (default: 8.0) Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. learning_rate : float, optional (default: 200.0) The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data may look like a 'ball' with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. If the cost function gets stuck in a bad local minimum increasing the learning rate may help. n_iter : int, optional (default: 1000) Maximum number of iterations for the optimization. Should be at least 250. n_iter_without_progress : int, optional (default: 300) Maximum number of iterations without progress before we abort the optimization, used after 250 initial iterations with early exaggeration. Note that progress is only checked every 50 iterations so this value is rounded to the next multiple of 50. min_grad_norm : float, optional (default: 1e-7) If the gradient norm is below this threshold, the optimization will be stopped. metric : string or callable, optional The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. The default is "euclidean" which is interpreted as squared euclidean distance. init : string or numpy array, optional (default: "random") Initialization of embedding. Possible options are 'random', 'pca', and a numpy array of shape (n_samples, n_components). PCA initialization cannot be used with precomputed distances and is usually more globally stable than random initialization. verbose : int, optional (default: 0) Verbosity level. random_state : int, RandomState instance or None, optional (default: None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Note that different initializations might result in different local minima of the cost function. method : string (default: 'barnes_hut') By default the gradient calculation algorithm uses Barnes-Hut approximation running in O(NlogN) time. method='exact' will run on the slower, but exact, algorithm in O(N^2) time. The exact algorithm should be used when nearest-neighbor errors need to be better than 3%. However, the exact method cannot scale to millions of examples. angle : float (default: 0.5) Only used if method='barnes_hut' This is the trade-off between speed and accuracy for Barnes-Hut T-SNE. 'angle' is the angular size (referred to as theta in [3]) of a distant node as measured from a point. If this size is below 'angle' then it is used as a summary node of all points contained within it. This method is not very sensitive to changes in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing computation time and angle greater 0.8 has quickly increasing error. """ assert len(X) > 0, "No input is given!" if isinstance(X[0], (tuple, list)): X = X[0] if not all(isinstance(x, np.ndarray) for x in X): raise ValueError("`X` can only be list of numpy.ndarray or numpy.ndarray") # ====== kwarg for creating T-SNE class ====== # kwargs = dict(locals()) del kwargs['X'] n_samples = kwargs.pop('n_samples', None) # ====== downsampling ====== # if n_samples is not None: n_samples = int(n_samples) assert n_samples > 0 new_X = [] rand = random_state if isinstance(random_state, np.random.RandomState) else \ np.random.RandomState(seed=random_state) for x in X: if x.shape[0] > n_samples: ids = rand.permutation(x.shape[0])[:n_samples] x = x[ids] new_X.append(x) X = new_X # ====== import proper T-SNE ====== # tsne_version = None try: from tsnecuda import TSNE from tsnecuda.NaiveTSNE import NaiveTSNE as _exact_TSNE tsne_version = 'cuda' except ImportError: # wprint("Install CUDA-TSNE from `https://github.com/CannyLab/tsne-cuda` " # "for significant speed up.") try: from MulticoreTSNE import MulticoreTSNE as TSNE tsne_version = 'multicore' except ImportError: wprint("Install MulticoreTSNE from `pip install git+https://github.com/DmitryUlyanov/Multicore-TSNE.git`" ' to accelerate the T-SNE on multiple CPU cores.') try: from sklearn.manifold import TSNE tsne_version = 'sklearn' except Exception as e: raise e # ====== modify kwargs ====== # if tsne_version == 'cuda': kwargs['random_seed'] = kwargs['random_state'] kwargs['theta'] = angle if method == 'exact': TSNE = _exact_TSNE del kwargs['theta'] del kwargs['random_state'] del kwargs['n_jobs'] del kwargs['angle'] del kwargs['method'] elif tsne_version == 'multicore': pass else: del kwargs['n_jobs'] # ====== getting cached values ====== # results = [] X_new = [] for i, x in enumerate(X): md5 = md5_checksum(x) key = _create_key(kwargs, md5) if key in _cached_values: results.append((i, _cached_values[key])) else: X_new.append((i, md5, x)) # ====== perform T-SNE ====== # def apply_tsne(j): idx, md5, x = j tsne = TSNE(**kwargs) return (idx, md5, tsne.fit_transform(x)) # only 1 X, no need for MPI if len(X_new) == 1: idx, md5, x = apply_tsne(X_new[0]) results.append((idx, x)) _cached_values[_create_key(kwargs, md5)] = x else: mpi = MPI(jobs=X_new, func=apply_tsne, batch=1, ncpu=min(len(X_new), cpu_count() - 1)) for idx, md5, x in mpi: results.append((idx, x)) _cached_values[_create_key(kwargs, md5)] = x # ====== return and clean ====== # results = sorted(results, key=lambda a: a[0]) results = [r[1] for r in results] return results[0] if len(results) == 1 else results
'sre04', 'sre05', 'sre06', 'sre08', 'sre10'] # ====== DNN ====== # BATCH_SIZE = int(_args.batch) EPOCH = int(_args.epoch) LEARNING_RATE = float(_args.lr) GRADIENT_CLIPPING = float(_args.clip) # ====== searching for the appropriate system ====== # SCORE_SYSTEM_NAME = _args.sys SCORE_SYSTEM_ID = int(_args.sysid) N_LDA = int(_args.lda) N_PLDA = int(_args.plda) assert N_PLDA > 0, "Number of PLDA components must > 0, but given: %d" % N_PLDA PLDA_MAXIMUM_LIKELIHOOD = bool(_args.mll) PLDA_SHOW_LLK = bool(_args.showllk) # ====== system ====== # NCPU = min(18, mpi.cpu_count() - 2) if _args.ncpu <= 0 else int(_args.ncpu) # ====== helper for checking the requirement ====== # def _check_feature_extraction_requirement(): # check requirement for feature extraction from shutil import which if which('sox') is None: raise RuntimeError("`sox` was not installed") if which('sph2pipe') is None: raise RuntimeError("`sph2pipe` was not installed") if which('ffmpeg') is None: raise RuntimeError("`ffmpeg` was not installed") def _check_recipe_name_for_extraction(): # check the requirement of recipe name for feature extraction if '_' in FEATURE_RECIPE: raise ValueError("'_' can appear in recipe name which is: '%s'" % FEATURE_RECIPE)
def fast_tsne( *X, n_components: int = 2, max_samples: Optional[int] = None, perplexity: float = 30.0, early_exaggeration: float = 12.0, learning_rate: float = 200.0, n_iter: int = 1000, n_iter_without_progress: int = 300, exaggeration_iter: int = 250, perplexity_max_iter: int = 100, min_grad_norm: float = 1e-7, method: str = 'barnes_hut', metric: str = "euclidean", init: str = "random", angle: float = 0.5, n_jobs: Optional[int] = 4, merge_inputs: bool = True, pca_preprocessing: bool = True, return_model: bool = False, random_state: int = 1, verbose: int = 0, framework: Literal['auto', 'sklearn', 'cuml'] = 'auto', ): """ t-Stochastic Nearest Neighbors. If the algorithm take unexpected long time for running, lower the `exaggeration_iter`, or reduce the amount of samples by downsampling the dataset. Parameters ---------- n_components : int, optional (default: 2) Dimension of the embedded space. max_samples : {int, None} if given, downsampling the data to given number of sample perplexity : float, optional (default: 30) The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter. early_exaggeration : float, optional (default: 8.0) Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. learning_rate : float, optional (default: 200.0) The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data may look like a 'ball' with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. If the cost function gets stuck in a bad local minimum increasing the learning rate may help. n_iter : int, optional (default: 1000) Maximum number of iterations for the optimization. Should be at least 250. n_iter_without_progress : int, optional (default: 300) Maximum number of iterations without progress before we abort the optimization, used after 250 initial iterations with early exaggeration. Note that progress is only checked every 50 iterations so this value is rounded to the next multiple of 50. perplexity_max_iter : int, (default 100) The number of epochs the best gaussian bands are found for. exaggeration_iter : int, (default 250) To promote the growth of clusters, set this higher. min_grad_norm : float, optional (default: 1e-7) If the gradient norm is below this threshold, the optimization will be stopped. metric : string or callable, optional The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. The default is "euclidean" which is interpreted as squared euclidean distance. init : string or numpy array, optional (default: "random") Initialization of embedding. Possible options are 'random', 'pca', and a numpy array of shape (n_samples, n_components). PCA initialization cannot be used with precomputed distances and is usually more globally stable than random initialization. verbose : int, optional (default: 0) Verbosity level, a number from 0 to 6. random_state : int, RandomState instance or None, optional (default: None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Note that different initializations might result in different local minima of the cost function. method : string (default: 'barnes_hut') By default the gradient calculation algorithm uses Barnes-Hut approximation running in O(NlogN) time. method='exact' will run on the slower, but exact, algorithm in O(N^2) time. The exact algorithm should be used when nearest-neighbor errors need to be better than 3%. However, the exact method cannot scale to millions of examples. angle : float (default: 0.5) Only used if method='barnes_hut' This is the trade-off between speed and accuracy for Barnes-Hut T-SNE. 'angle' is the angular size (referred to as theta in [3]) of a distant node as measured from a point. If this size is below 'angle' then it is used as a summary node of all points contained within it. This method is not very sensitive to changes in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing computation time and angle greater 0.8 has quickly increasing error. return_model : a Boolean, if `True`, return the trained t-SNE model merge_inputs : a Boolean, if `True`, merge all arrays into a single array for training t-SNE. """ assert len(X) > 0, "No input is given!" if isinstance(X[0], (tuple, list)): X = X[0] if not all(isinstance(x, np.ndarray) for x in X): raise ValueError( "`X` can only be list of numpy.ndarray or numpy.ndarray") # ====== kwarg for creating T-SNE class ====== # kwargs = dict(locals()) del kwargs['X'] kwargs.pop('merge_inputs') kwargs.pop('return_model') kwargs.pop('max_samples') kwargs.pop('framework') kwargs.pop('pca_preprocessing') # ====== downsampling ====== # if max_samples is not None: max_samples = int(max_samples) assert max_samples > 0 new_X = [] rand = random_state if isinstance(random_state, np.random.RandomState) else \ np.random.RandomState(seed=random_state) for x in X: if x.shape[0] > max_samples: ids = rand.permutation(x.shape[0])[:max_samples] x = x[ids] new_X.append(x) X = new_X # ====== import proper T-SNE ====== # tsne_version = None if framework != 'sklearn': try: from cuml.manifold import TSNE tsne_version = 'cuda' except ImportError: warnings.warn("Install RAPIDSAI cuML GPUs-accelerated t-SNE") try: from MulticoreTSNE import MulticoreTSNE as TSNE tsne_version = 'multicore' except ImportError: warnings.warn( "pip install " "git+https://github.com/DmitryUlyanov/Multicore-TSNE.git") if tsne_version is None: from sklearn.manifold import TSNE tsne_version = 'sklearn' # ====== modify kwargs ====== # if tsne_version == 'cuda': del kwargs['n_jobs'] elif tsne_version == 'multicore': del kwargs['perplexity_max_iter'] del kwargs['exaggeration_iter'] else: del kwargs['n_jobs'] del kwargs['perplexity_max_iter'] del kwargs['exaggeration_iter'] # ====== getting cached values ====== # results = [] X_new = [] X_size = [] if merge_inputs: X_size = [x.shape[0] for x in X] x = np.vstack(X) if len(X) > 1 else X[0] md5 = md5_checksum(x) key = _create_key(tsne_version, kwargs, md5) if key in _cached_values: results.append((0, _cached_values[key])) else: X_new.append((0, md5, x)) else: for i, x in enumerate(X): md5 = md5_checksum(x) key = _create_key(tsne_version, kwargs, md5) if key in _cached_values: results.append((i, _cached_values[key])) else: X_new.append((i, md5, x)) # ====== perform T-SNE ====== # def apply_tsne(j): idx, md5, x = j if pca_preprocessing: x = PCA(n_components=None, random_state=random_state).fit_transform(x) tsne = TSNE(**kwargs) return (idx, md5, tsne.fit_transform(x), tsne if return_model else None) # only 1 X, no need for MPI if len(X_new) == 1 or tsne_version in ('cuda', 'multicore'): for x in X_new: idx, md5, x, model = apply_tsne(x) results.append((idx, x)) _cached_values[_create_key(tsne_version, kwargs, md5)] = x else: mpi = MPI(jobs=X_new, func=apply_tsne, batch=1, ncpu=min(len(X_new), cpu_count() - 1)) model = [] for idx, md5, x, m in mpi: results.append((idx, x)) _cached_values[_create_key(tsne_version, kwargs, md5)] = x model.append(m) # ====== return and clean ====== # if merge_inputs and len(X_size) > 1: indices = [0] + np.cumsum(X_size).tolist() results = [results[0][1][s:e] for s, e in zip(indices, indices[1:])] else: results = sorted(results, key=lambda a: a[0]) results = [r[1] for r in results] results = results[0] if len(results) == 1 else results if return_model: return results, model del model return results