Example #1
0
    def test_serialize_deserialize(self):
        # Create a network object that sets all of its config options.
        kwargs = dict(
            input_specs=hardnet.HardNet(model_id=70).output_specs,
            model_id=70,
            activation='relu',
            use_sync_bn=False,
            norm_momentum=0.99,
            norm_epsilon=0.001,
            kernel_initializer='VarianceScaling',
            kernel_regularizer=None,
            bias_regularizer=None,
        )
        network = hardnet_decoder.HardNetDecoder(**kwargs)

        expected_config = dict(kwargs)
        self.assertEqual(network.get_config(), expected_config)

        # Create another network object from the first object's config.
        new_network = hardnet_decoder.HardNetDecoder.from_config(
            network.get_config())

        # Validate that the config can be forced to JSON.
        _ = new_network.to_json()

        # If the serialization was successful, the new config should match the old.
        self.assertAllEqual(network.get_config(), new_network.get_config())
Example #2
0
    def test_input_specs(self, input_dim):
        """Test different input feature dimensions."""
        tf.keras.backend.set_image_data_format('channels_last')

        input_specs = tf.keras.layers.InputSpec(
            shape=[None, None, None, input_dim])
        network = hardnet.HardNet(model_id=70, input_specs=input_specs)

        inputs = tf.keras.Input(shape=(256, 256, input_dim), batch_size=1)
        _ = network(inputs)
Example #3
0
    def test_network_creation(self, model_id, input_size):
        """Test creation of HardnetDecoder."""
        tf.keras.backend.set_image_data_format('channels_last')

        inputs = tf.keras.Input(shape=(input_size, input_size, 3),
                                batch_size=1)

        backbone = hardnet.HardNet(model_id=70)
        network = hardnet_decoder.HardNetDecoder(
            model_id=model_id, input_specs=backbone.output_specs)

        endpoints = backbone(inputs)
        feats = network(endpoints)
        feats = list(feats.values())[0]  # only one output

        # number of stride downs at stem = 2, size of last downsampling channel at stem = 48
        self.assertAllEqual([1, input_size // 2**2, input_size // 2**2, 48],
                            feats.shape.as_list())
Example #4
0
    def test_network_creation(self, input_size):
        """Test creation of HardNet family models."""
        tf.keras.backend.set_image_data_format('channels_last')

        network = hardnet.HardNet(model_id=70)

        inputs = tf.keras.Input(shape=(input_size, input_size, 3),
                                batch_size=1)
        endpoints = network(inputs)

        self.assertAllEqual([1, input_size / 2**2, input_size / 2**2, 48],
                            endpoints['0'].shape.as_list())
        self.assertAllEqual([1, input_size / 2**3, input_size / 2**3, 78],
                            endpoints['1'].shape.as_list())
        self.assertAllEqual([1, input_size / 2**4, input_size / 2**4, 160],
                            endpoints['2'].shape.as_list())
        self.assertAllEqual([1, input_size / 2**5, input_size / 2**5, 214],
                            endpoints['3'].shape.as_list())
        self.assertAllEqual([1, input_size / 2**6, input_size / 2**6, 286],
                            endpoints['4'].shape.as_list())