def test_serialize_deserialize(self): # Create a network object that sets all of its config options. kwargs = dict( input_specs=hardnet.HardNet(model_id=70).output_specs, model_id=70, activation='relu', use_sync_bn=False, norm_momentum=0.99, norm_epsilon=0.001, kernel_initializer='VarianceScaling', kernel_regularizer=None, bias_regularizer=None, ) network = hardnet_decoder.HardNetDecoder(**kwargs) expected_config = dict(kwargs) self.assertEqual(network.get_config(), expected_config) # Create another network object from the first object's config. new_network = hardnet_decoder.HardNetDecoder.from_config( network.get_config()) # Validate that the config can be forced to JSON. _ = new_network.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(network.get_config(), new_network.get_config())
def test_input_specs(self, input_dim): """Test different input feature dimensions.""" tf.keras.backend.set_image_data_format('channels_last') input_specs = tf.keras.layers.InputSpec( shape=[None, None, None, input_dim]) network = hardnet.HardNet(model_id=70, input_specs=input_specs) inputs = tf.keras.Input(shape=(256, 256, input_dim), batch_size=1) _ = network(inputs)
def test_network_creation(self, model_id, input_size): """Test creation of HardnetDecoder.""" tf.keras.backend.set_image_data_format('channels_last') inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1) backbone = hardnet.HardNet(model_id=70) network = hardnet_decoder.HardNetDecoder( model_id=model_id, input_specs=backbone.output_specs) endpoints = backbone(inputs) feats = network(endpoints) feats = list(feats.values())[0] # only one output # number of stride downs at stem = 2, size of last downsampling channel at stem = 48 self.assertAllEqual([1, input_size // 2**2, input_size // 2**2, 48], feats.shape.as_list())
def test_network_creation(self, input_size): """Test creation of HardNet family models.""" tf.keras.backend.set_image_data_format('channels_last') network = hardnet.HardNet(model_id=70) inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1) endpoints = network(inputs) self.assertAllEqual([1, input_size / 2**2, input_size / 2**2, 48], endpoints['0'].shape.as_list()) self.assertAllEqual([1, input_size / 2**3, input_size / 2**3, 78], endpoints['1'].shape.as_list()) self.assertAllEqual([1, input_size / 2**4, input_size / 2**4, 160], endpoints['2'].shape.as_list()) self.assertAllEqual([1, input_size / 2**5, input_size / 2**5, 214], endpoints['3'].shape.as_list()) self.assertAllEqual([1, input_size / 2**6, input_size / 2**6, 286], endpoints['4'].shape.as_list())