def test_serialize_deserialize(self):
        # Create a network object that sets all of its config options.
        kwargs = dict(
            model_id='b0',
            se_ratio=0.25,
            stochastic_depth_drop_rate=None,
            use_sync_bn=False,
            kernel_initializer='VarianceScaling',
            kernel_regularizer=None,
            bias_regularizer=None,
            activation='relu',
            norm_momentum=0.99,
            norm_epsilon=0.001,
        )
        network = efficientnet.EfficientNet(**kwargs)

        expected_config = dict(kwargs)
        self.assertEqual(network.get_config(), expected_config)

        # Create another network object from the first object's config.
        new_network = efficientnet.EfficientNet.from_config(
            network.get_config())

        # Validate that the config can be forced to JSON.
        _ = new_network.to_json()

        # If the serialization was successful, the new config should match the old.
        self.assertAllEqual(network.get_config(), new_network.get_config())
    def test_input_specs(self, input_dim):
        """Test different input feature dimensions."""
        tf.keras.backend.set_image_data_format('channels_last')

        input_specs = tf.keras.layers.InputSpec(
            shape=[None, None, None, input_dim])
        network = efficientnet.EfficientNet(model_id='b0',
                                            input_specs=input_specs)

        inputs = tf.keras.Input(shape=(128, 128, input_dim), batch_size=1)
        _ = network(inputs)
    def test_network_scaling(self, model_id):
        """Test compound scaling."""
        efficientnet_params = {
            'b0': 4049564,
            'b3': 10783528,
            'b6': 40960136,
        }
        tf.keras.backend.set_image_data_format('channels_last')

        input_size = 32
        network = efficientnet.EfficientNet(model_id=model_id, se_ratio=0.25)
        self.assertEqual(network.count_params(), efficientnet_params[model_id])

        inputs = tf.keras.Input(shape=(input_size, input_size, 3),
                                batch_size=1)
        _ = network(inputs)
    def test_network_creation(self, input_size):
        """Test creation of EfficientNet family models."""
        tf.keras.backend.set_image_data_format('channels_last')

        network = efficientnet.EfficientNet(model_id='b0')

        inputs = tf.keras.Input(shape=(input_size, input_size, 3),
                                batch_size=1)
        endpoints = network(inputs)

        self.assertAllEqual([1, input_size / 2**2, input_size / 2**2, 24],
                            endpoints['2'].shape.as_list())
        self.assertAllEqual([1, input_size / 2**3, input_size / 2**3, 40],
                            endpoints['3'].shape.as_list())
        self.assertAllEqual([1, input_size / 2**4, input_size / 2**4, 112],
                            endpoints['4'].shape.as_list())
        self.assertAllEqual([1, input_size / 2**5, input_size / 2**5, 320],
                            endpoints['5'].shape.as_list())