def test_serialize_deserialize(self): # Create a network object that sets all of its config options. kwargs = dict( model_id='b0', se_ratio=0.25, stochastic_depth_drop_rate=None, use_sync_bn=False, kernel_initializer='VarianceScaling', kernel_regularizer=None, bias_regularizer=None, activation='relu', norm_momentum=0.99, norm_epsilon=0.001, ) network = efficientnet.EfficientNet(**kwargs) expected_config = dict(kwargs) self.assertEqual(network.get_config(), expected_config) # Create another network object from the first object's config. new_network = efficientnet.EfficientNet.from_config( network.get_config()) # Validate that the config can be forced to JSON. _ = new_network.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(network.get_config(), new_network.get_config())
def test_input_specs(self, input_dim): """Test different input feature dimensions.""" tf.keras.backend.set_image_data_format('channels_last') input_specs = tf.keras.layers.InputSpec( shape=[None, None, None, input_dim]) network = efficientnet.EfficientNet(model_id='b0', input_specs=input_specs) inputs = tf.keras.Input(shape=(128, 128, input_dim), batch_size=1) _ = network(inputs)
def test_network_scaling(self, model_id): """Test compound scaling.""" efficientnet_params = { 'b0': 4049564, 'b3': 10783528, 'b6': 40960136, } tf.keras.backend.set_image_data_format('channels_last') input_size = 32 network = efficientnet.EfficientNet(model_id=model_id, se_ratio=0.25) self.assertEqual(network.count_params(), efficientnet_params[model_id]) inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1) _ = network(inputs)
def test_network_creation(self, input_size): """Test creation of EfficientNet family models.""" tf.keras.backend.set_image_data_format('channels_last') network = efficientnet.EfficientNet(model_id='b0') inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1) endpoints = network(inputs) self.assertAllEqual([1, input_size / 2**2, input_size / 2**2, 24], endpoints['2'].shape.as_list()) self.assertAllEqual([1, input_size / 2**3, input_size / 2**3, 40], endpoints['3'].shape.as_list()) self.assertAllEqual([1, input_size / 2**4, input_size / 2**4, 112], endpoints['4'].shape.as_list()) self.assertAllEqual([1, input_size / 2**5, input_size / 2**5, 320], endpoints['5'].shape.as_list())