def get_spectrum( self, t=None, iteration=None, pol=None, m='all', plot=False, **kw ): """ Return the spectrum of the laser (Absolute value of the Fourier transform of the fields.) Parameters ---------- t : float (in seconds), optional Time at which to obtain the data (if this does not correspond to an available file, the last file before `t` will be used) Either `t` or `iteration` should be given by the user. iteration : int The iteration at which to obtain the data Either `t` or `iteration` should be given by the user. pol : string Polarization of the field. Options are 'x', 'y' m : int or str, optional Only used for thetaMode geometry Either 'all' (for the sum of all the modes) or an integer (for the selection of a particular mode) plot: bool, optional Whether to plot the data **kw : dict, otional Additional options to be passed to matplotlib's `plot` method Returns ------- A tuple with: - The 1D spectrum on axis - A FieldMetaInformation object """ # Check if polarization has been entered if pol not in ['x', 'y']: raise ValueError('The `pol` argument is missing or erroneous.') if pol == 'x': slicing_dir = 'y' theta = 0 else: slicing_dir = 'x' theta = np.pi/2. # Get field data field, info = self.get_field( t=t, iteration=iteration, field='E', coord=pol, theta=theta, m=m, slicing_dir=slicing_dir ) # Get central field lineout field1d = field[field.shape[0]/2, :] # FFT of 1d data dt = (info.z[1]-info.z[0])/const.c # Integration step for the FFT fft_field = np.fft.fft(field1d) * dt # Take half of the data (positive frequencies only) spectrum = abs( fft_field[ :len(fft_field)/2 ] ) # Create a FieldMetaInformation object T = (info.zmax-info.zmin)/const.c spect_info = FieldMetaInformation( {0:'omega'}, spectrum.shape, grid_spacing=( 2*np.pi/T, ), grid_unitSI=1, global_offset=(0,), position=(0,)) # Plot the field if required if plot: plt.plot( spect_info.omega, spectrum, **kw ) plt.xlabel('$\omega \; (rad.s^{-1})$', fontsize=self.plotter.fontsize ) plt.ylabel('Spectrum', fontsize=self.plotter.fontsize ) return( spectrum, spect_info )
def get_spectrogram( self, t=None, iteration=None, pol=None, theta=0, slicing_dir='y', plot=False, **kw ): """ Calculates the spectrogram of a laserpulse, by the FROG method. Mathematically: $$ s(\omega, \tau) = | \int_{-\infty}^{\infty} E(t) |E(t-\tau)|^2 \exp( -i\omega t) dt |^2 $$ See Trebino, R: Frequency Resolved Optical Gating: The measurements of Ultrashort Laser Pulses: year 2000: formula 5.2 The time is centered around the laser pulse. Parameters ---------- t : float (in seconds), optional Time at which to obtain the data (if this does not correspond to an available file, the last file before `t` will be used) Either `t` or `iteration` should be given by the user. iteration : int The iteration at which to obtain the data Either `t` or `iteration` should be given by the user. pol : string Polarization of the laser field. Options are 'x', 'y' plot: bool, optional Whether to plot the spectrogram **kw : dict, otional Additional options to be passed to matplotlib's `imshow` method Returns ------- - A 2d array with spectrogram - info : a FieldMetaInformation object (see the corresponding docstring) """ # Get the field envelope env, _ = self.get_laser_envelope(t=t, iteration=iteration, pol=pol) # Get the field E, info = self.get_field( t=t, iteration=iteration, field='E', coord=pol, theta=theta, slicing_dir=slicing_dir ) # Get central slice E = E[E.shape[0] / 2, :] Nz = len(E) # Get time domain of the data tmin = info.zmin / const.c tmax = info.zmax / const.c T = tmax - tmin dt = T / Nz # Normalize the Envelope env /= np.sqrt(np.trapz(env ** 2, dx=dt)) # Allocate array for the gating function and the spectrogran E_shift = np.zeros_like(E) spectrogram = np.zeros((2 * Nz, Nz)) # Loop over the time variable of the spectrogram for i in range( Nz * 2): itau = i % Nz # Shift the E field and fill the rest with zeros if i < Nz: E_shift[:itau] = env[ Nz - itau: Nz] E_shift[itau:] = 0 else: E_shift[itau:] = env[: Nz - itau] E_shift[:itau] = 0 EE = E * E_shift ** 2 fft_EE = np.fft.fft(EE) spectrogram[i, :] = np.abs(fft_EE) ** 2 # Rotate and flip array to have input form of imshow spectrogram = np.flipud(np.rot90(spectrogram[:, Nz / 2:])) # Find the time at which the wigner transform is the highest maxi, maxj = np.unravel_index(spectrogram.argmax(), spectrogram.shape) tmin = -(T - T / spectrogram.shape[1] * maxj) info = FieldMetaInformation( {0:'omega', 1:'t'}, spectrogram.shape, grid_spacing=( 2*np.pi/T, dt/2. ), grid_unitSI=1, global_offset=(0, tmin), position=(0, 0)) # Plot the result if needed if plot: iteration = self.iterations[ self.current_i ] time_fs = 1.e15*self.t[ self.current_i ] plt.imshow( spectrogram, extent=info.imshow_extent, aspect='auto', **kw) plt.title("Spectrogram at %.1f fs (iteration %d)" \ %(time_fs, iteration ), fontsize=self.plotter.fontsize) plt.xlabel('$t \;(s)$', fontsize=self.plotter.fontsize ) plt.ylabel('$\omega \;(rad.s^{-1})$', fontsize=self.plotter.fontsize ) return( spectrogram, info )
def get_current( self, t=None, iteration=None, species=None, select=None, bins=100, plot=False, **kw ): """ Calculate the electric current along the z-axis for selected particles. Parameters ---------- t : float (in seconds), optional Time at which to obtain the data (if this does not correspond to an available file, the last file before `t` will be used) Either `t` or `iteration` should be given by the user iteration : int The iteration at which to obtain the data Either `t` or `iteration` should be given by the user species : string Particle species to use for calculations select : dict, optional Either None or a dictionary of rules to select the particles, of the form 'x' : [-4., 10.] (Particles having x between -4 and 10 microns) 'z' : [0, 100] (Particles having x between 0 and 100 microns) bins : int, optional Number of bins along the z-axis in which to calculate the current plot : bool, optional Whether to plot the requested quantity **kw : dict, otional Additional options to be passed to matplotlib's `plot` method Returns ------- A tuple of arrays containig - The current in each bin in Ampere - A FieldMetaInformation object (See object's docstring for more details) """ # Get particle data z, uz, uy, ux, w, q = self.get_particle( var_list=['z', 'uz', 'uy', 'ux', 'w', 'charge'], t=t, iteration=iteration, species=species, select=select ) # Calculate Lorentz factor for all particles gamma = np.sqrt(1 + ux ** 2 + uy ** 2 + uz ** 2) # Calculate particle velocities vz = uz / gamma * const.c # Length to be seperated in bins len_z = np.max(z) - np.min(z) vzq_sum, _ = np.histogram(z, bins=bins, weights=(vz*w*q)) # Calculete the current in each bin current = np.abs(vzq_sum * bins / (len_z * 1.e-6)) # Info object with central position of the bins info = FieldMetaInformation( {0: 'z'}, current.shape, grid_spacing=(len_z/bins, ), grid_unitSI=1, global_offset=(np.min(z)+len_z/bins/2,), position=(0,)) # Plot the result if needed if plot: iteration = self.iterations[ self.current_i ] time_fs = 1.e15*self.t[ self.current_i ] plt.plot( info.z, current, **kw) plt.title("Current at %.1f fs (iteration %d)" %(time_fs, iteration ), fontsize=self.plotter.fontsize) plt.xlabel('$z \;(\mu m)$', fontsize=self.plotter.fontsize) plt.ylabel('$I \;(A)$', fontsize=self.plotter.fontsize) # Return the current and bin centers return(current, info)