Exemplo n.º 1
0
    def get_spectrum( self, t=None, iteration=None, pol=None,
                      m='all', plot=False, **kw ):
        """
        Return the spectrum of the laser
        (Absolute value of the Fourier transform of the fields.)

        Parameters
        ----------
        t : float (in seconds), optional
            Time at which to obtain the data (if this does not correspond to
            an available file, the last file before `t` will be used)
            Either `t` or `iteration` should be given by the user.

        iteration : int
            The iteration at which to obtain the data
            Either `t` or `iteration` should be given by the user.

        pol : string
            Polarization of the field. Options are 'x', 'y'

        m : int or str, optional
           Only used for thetaMode geometry
           Either 'all' (for the sum of all the modes)
           or an integer (for the selection of a particular mode)

        plot: bool, optional
           Whether to plot the data

        **kw : dict, otional
           Additional options to be passed to matplotlib's `plot` method

        Returns
        -------
        A tuple with:
            - The 1D spectrum on axis        
            - A FieldMetaInformation object 
        """
        # Check if polarization has been entered
        if pol not in ['x', 'y']:
            raise ValueError('The `pol` argument is missing or erroneous.')
        if pol == 'x':
            slicing_dir = 'y'
            theta = 0
        else:
            slicing_dir = 'x'
            theta = np.pi/2.

        # Get field data
        field, info = self.get_field( t=t, iteration=iteration, field='E',
                                coord=pol, theta=theta, m=m,
                                slicing_dir=slicing_dir )
        # Get central field lineout
        field1d = field[field.shape[0]/2, :]
        # FFT of 1d data
        dt = (info.z[1]-info.z[0])/const.c  # Integration step for the FFT
        fft_field = np.fft.fft(field1d) * dt
        # Take half of the data (positive frequencies only)
        spectrum = abs( fft_field[ :len(fft_field)/2 ] )
        # Create a FieldMetaInformation object
        T = (info.zmax-info.zmin)/const.c
        spect_info = FieldMetaInformation( {0:'omega'}, spectrum.shape,
                    grid_spacing=( 2*np.pi/T, ), grid_unitSI=1,
                    global_offset=(0,), position=(0,))

        # Plot the field if required
        if plot:
            plt.plot( spect_info.omega, spectrum, **kw )
            plt.xlabel('$\omega \; (rad.s^{-1})$',
                       fontsize=self.plotter.fontsize )
            plt.ylabel('Spectrum', fontsize=self.plotter.fontsize )
        
        return( spectrum, spect_info )
Exemplo n.º 2
0
    def get_spectrogram( self, t=None, iteration=None, pol=None, theta=0,
                          slicing_dir='y', plot=False, **kw ):
        """
        Calculates the spectrogram of a laserpulse, by the FROG method.

        Mathematically:
        $$ s(\omega, \tau) = | \int_{-\infty}^{\infty} E(t) |E(t-\tau)|^2
            \exp( -i\omega t) dt |^2 $$
        See Trebino, R: Frequency Resolved Optical Gating: The measurements of
        Ultrashort Laser Pulses: year 2000: formula 5.2

        The time is centered around the laser pulse.

        Parameters
        ----------
        t : float (in seconds), optional
            Time at which to obtain the data (if this does not correspond to
            an available file, the last file before `t` will be used)
            Either `t` or `iteration` should be given by the user.

        iteration : int
            The iteration at which to obtain the data
            Either `t` or `iteration` should be given by the user.

        pol : string
            Polarization of the laser field. Options are 'x', 'y'

        plot: bool, optional
            Whether to plot the spectrogram

        **kw : dict, otional
           Additional options to be passed to matplotlib's `imshow` method
           
        Returns
        -------
        - A 2d array with spectrogram
        - info : a FieldMetaInformation object
           (see the corresponding docstring)
        """
        # Get the field envelope
        env, _ = self.get_laser_envelope(t=t, iteration=iteration, pol=pol)
        # Get the field
        E, info = self.get_field( t=t, iteration=iteration, field='E',
                                    coord=pol, theta=theta,
                                    slicing_dir=slicing_dir )
        # Get central slice
        E = E[E.shape[0] / 2, :]
        Nz = len(E)
        # Get time domain of the data
        tmin = info.zmin / const.c
        tmax = info.zmax / const.c
        T = tmax - tmin
        dt = T / Nz
        # Normalize the Envelope
        env /= np.sqrt(np.trapz(env ** 2, dx=dt))
        # Allocate array for the gating function and the spectrogran
        E_shift = np.zeros_like(E)
        spectrogram = np.zeros((2 * Nz, Nz))
        # Loop over the time variable of the spectrogram
        for i in range( Nz * 2):
            itau = i % Nz
            # Shift the E field and fill the rest with zeros
            if i < Nz:
                E_shift[:itau] = env[ Nz - itau: Nz]
                E_shift[itau:] = 0
            else:
                E_shift[itau:] = env[: Nz - itau]
                E_shift[:itau] = 0
            EE = E * E_shift ** 2
            fft_EE = np.fft.fft(EE)
            spectrogram[i, :] = np.abs(fft_EE) ** 2
        # Rotate and flip array to have input form of imshow
        spectrogram = np.flipud(np.rot90(spectrogram[:, Nz / 2:]))
        # Find the time at which the wigner transform is the highest
        maxi, maxj = np.unravel_index(spectrogram.argmax(), spectrogram.shape)
        tmin = -(T - T / spectrogram.shape[1] * maxj)
        info = FieldMetaInformation( {0:'omega', 1:'t'}, spectrogram.shape,
                    grid_spacing=( 2*np.pi/T, dt/2. ), grid_unitSI=1,
                    global_offset=(0, tmin), position=(0, 0))

        # Plot the result if needed
        if plot:
            iteration = self.iterations[ self.current_i ]
            time_fs = 1.e15*self.t[ self.current_i ]
            plt.imshow( spectrogram, extent=info.imshow_extent, aspect='auto',
                        **kw)
            plt.title("Spectrogram at %.1f fs   (iteration %d)" \
                %(time_fs, iteration ), fontsize=self.plotter.fontsize)
            plt.xlabel('$t \;(s)$', fontsize=self.plotter.fontsize )
            plt.ylabel('$\omega \;(rad.s^{-1})$',
                       fontsize=self.plotter.fontsize )

        return( spectrogram, info )
Exemplo n.º 3
0
    def get_current( self, t=None, iteration=None, species=None, select=None,
                     bins=100, plot=False, **kw ):
        """
        Calculate the electric current along the z-axis for selected particles.

        Parameters
        ----------
         t : float (in seconds), optional
            Time at which to obtain the data (if this does not correspond to
            an available file, the last file before `t` will be used)
            Either `t` or `iteration` should be given by the user

        iteration : int
            The iteration at which to obtain the data
            Either `t` or `iteration` should be given by the user

        species : string
            Particle species to use for calculations

        select : dict, optional
            Either None or a dictionary of rules
            to select the particles, of the form
            'x' : [-4., 10.]   (Particles having x between -4 and 10 microns)
            'z' : [0, 100] (Particles having x between 0 and 100 microns)

        bins : int, optional
            Number of bins along the z-axis in which to calculate the current

        plot : bool, optional
           Whether to plot the requested quantity

        **kw : dict, otional
           Additional options to be passed to matplotlib's `plot` method
        Returns
        -------
        A tuple of arrays containig
        - The current in each bin in Ampere
        - A FieldMetaInformation object (See object's docstring for more details)

        """
        # Get particle data
        z, uz, uy, ux, w, q = self.get_particle(
                               var_list=['z', 'uz', 'uy', 'ux', 'w', 'charge'],
                               t=t, iteration=iteration,
                               species=species, select=select )
        # Calculate Lorentz factor for all particles
        gamma = np.sqrt(1 + ux ** 2 + uy ** 2 + uz ** 2)
        # Calculate particle velocities
        vz = uz / gamma * const.c
        # Length to be seperated in bins
        len_z = np.max(z) - np.min(z)
        vzq_sum, _ = np.histogram(z, bins=bins, weights=(vz*w*q))
        # Calculete the current in each bin
        current = np.abs(vzq_sum * bins / (len_z * 1.e-6))
        # Info object with central position of the bins
        info = FieldMetaInformation( {0: 'z'}, current.shape,
                    grid_spacing=(len_z/bins, ), grid_unitSI=1,
                    global_offset=(np.min(z)+len_z/bins/2,), position=(0,))
        # Plot the result if needed
        if plot:
            iteration = self.iterations[ self.current_i ]
            time_fs = 1.e15*self.t[ self.current_i ]
            plt.plot( info.z, current, **kw)
            plt.title("Current at %.1f fs   (iteration %d)"
                %(time_fs, iteration ), fontsize=self.plotter.fontsize)
            plt.xlabel('$z \;(\mu m)$', fontsize=self.plotter.fontsize)
            plt.ylabel('$I \;(A)$', fontsize=self.plotter.fontsize)
        # Return the current and bin centers
        return(current, info)