def test_match_detection_to_ref(self): """Match detection to reference (sortgrid)""" xyz_input = np.array([(10, 10, 10), (200, 200, 200), (600, 800, 100), (20, 10, 2000), (30, 30, 30)], dtype=float) coords_count = len(xyz_input) xy_img_pts_metric = image_coordinates( xyz_input, self.calibration, self.control.get_multimedia_params()) xy_img_pts_pixel = convert_arr_metric_to_pixel( xy_img_pts_metric, control=self.control) # convert to TargetArray object target_array = TargetArray(coords_count) for i in range(coords_count): target_array[i].set_pnr(i) target_array[i].set_pos( (xy_img_pts_pixel[i][0], xy_img_pts_pixel[i][1])) # create randomized target array indices = range(coords_count) shuffled_indices = range(coords_count) while indices == shuffled_indices: random.shuffle(shuffled_indices) rand_targ_array = TargetArray(coords_count) for i in range(coords_count): rand_targ_array[shuffled_indices[i]].set_pos(target_array[i].pos()) rand_targ_array[shuffled_indices[i]].set_pnr(target_array[i].pnr()) # match detection to reference matched_target_array = match_detection_to_ref(cal=self.calibration, ref_pts=xyz_input, img_pts=rand_targ_array, cparam=self.control) # assert target array is as before for i in range(coords_count): if matched_target_array[i].pos() != target_array[i].pos() \ or matched_target_array[i].pnr() != target_array[i].pnr(): self.fail() # pass ref_pts and img_pts with non-equal lengths with self.assertRaises(ValueError): match_detection_to_ref(cal=self.calibration, ref_pts=xyz_input, img_pts=TargetArray(coords_count - 1), cparam=self.control)
def test_match_detection_to_ref(self): """Match detection to reference (sortgrid)""" xyz_input = np.array([(10, 10, 10), (200, 200, 200), (600, 800, 100), (20, 10, 2000), (30, 30, 30)], dtype=float) coords_count = len(xyz_input) xy_img_pts_metric = image_coordinates( xyz_input, self.calibration, self.control.get_multimedia_params()) xy_img_pts_pixel = convert_arr_metric_to_pixel(xy_img_pts_metric, control=self.control) # convert to TargetArray object target_array = TargetArray(coords_count) for i in range(coords_count): target_array[i].set_pnr(i) target_array[i].set_pos( (xy_img_pts_pixel[i][0], xy_img_pts_pixel[i][1])) # create randomized target array indices = range(coords_count) shuffled_indices = range(coords_count) while indices == shuffled_indices: random.shuffle(shuffled_indices) rand_targ_array = TargetArray(coords_count) for i in range(coords_count): rand_targ_array[shuffled_indices[i]].set_pos(target_array[i].pos()) rand_targ_array[shuffled_indices[i]].set_pnr(target_array[i].pnr()) # match detection to reference matched_target_array = match_detection_to_ref(cal=self.calibration, ref_pts=xyz_input, img_pts=rand_targ_array, cparam=self.control) # assert target array is as before for i in range(coords_count): if matched_target_array[i].pos() != target_array[i].pos() \ or matched_target_array[i].pnr() != target_array[i].pnr(): self.fail() # pass ref_pts and img_pts with non-equal lengths with self.assertRaises(ValueError): match_detection_to_ref(cal=self.calibration, ref_pts=xyz_input, img_pts=TargetArray(coords_count - 1), cparam=self.control)
def _button_sort_grid_fired(self): """ Uses sortgrid function of liboptv to match between the calibration points in the fixp target file and the targets detected in the images """ if self.need_reset: self.reset_show_images() self.need_reset = 0 self.sorted_targs = [] for i_cam in range(self.n_cams): # if len(self.cal_points) > len(self.detections[i_cam]): # raise ValueError("Insufficient detected points, need at least as" # "many as fixed points") targs = match_detection_to_ref(self.cals[i_cam], self.cal_points['pos'], self.detections[i_cam], self.cpar) x, y, pnr = [], [], [] for t in targs: if t.pnr() != -999: pnr.append(t.pnr()) x.append(t.pos()[0]) y.append(t.pos()[1]) self.sorted_targs.append(targs) self.camera[i_cam]._plot.overlays = [] self.camera[i_cam].plot_num_overlay(x, y, pnr) self.status_text = "Sort grid finished." self.pass_sortgrid = True