Exemple #1
0
    def test_match_detection_to_ref(self):
        """Match detection to reference (sortgrid)"""
        xyz_input = np.array([(10, 10, 10),
                              (200, 200, 200),
                              (600, 800, 100),
                              (20, 10, 2000),
                              (30, 30, 30)], dtype=float)
        coords_count = len(xyz_input)

        xy_img_pts_metric = image_coordinates(
            xyz_input, self.calibration, self.control.get_multimedia_params())
        xy_img_pts_pixel = convert_arr_metric_to_pixel(
            xy_img_pts_metric, control=self.control)

        # convert to TargetArray object
        target_array = TargetArray(coords_count)

        for i in range(coords_count):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(
                (xy_img_pts_pixel[i][0], xy_img_pts_pixel[i][1]))

        # create randomized target array
        indices = range(coords_count)
        shuffled_indices = range(coords_count)

        while indices == shuffled_indices:
            random.shuffle(shuffled_indices)

        rand_targ_array = TargetArray(coords_count)
        for i in range(coords_count):
            rand_targ_array[shuffled_indices[i]].set_pos(target_array[i].pos())
            rand_targ_array[shuffled_indices[i]].set_pnr(target_array[i].pnr())

        # match detection to reference
        matched_target_array = match_detection_to_ref(cal=self.calibration,
                                                      ref_pts=xyz_input,
                                                      img_pts=rand_targ_array,
                                                      cparam=self.control)

        # assert target array is as before
        for i in range(coords_count):
            if matched_target_array[i].pos() != target_array[i].pos() \
                    or matched_target_array[i].pnr() != target_array[i].pnr():
                self.fail()

        # pass ref_pts and img_pts with non-equal lengths
        with self.assertRaises(ValueError):
            match_detection_to_ref(cal=self.calibration,
                                   ref_pts=xyz_input,
                                   img_pts=TargetArray(coords_count - 1),
                                   cparam=self.control)
Exemple #2
0
    def test_match_detection_to_ref(self):
        """Match detection to reference (sortgrid)"""
        xyz_input = np.array([(10, 10, 10), (200, 200, 200), (600, 800, 100),
                              (20, 10, 2000), (30, 30, 30)],
                             dtype=float)
        coords_count = len(xyz_input)

        xy_img_pts_metric = image_coordinates(
            xyz_input, self.calibration, self.control.get_multimedia_params())
        xy_img_pts_pixel = convert_arr_metric_to_pixel(xy_img_pts_metric,
                                                       control=self.control)

        # convert to TargetArray object
        target_array = TargetArray(coords_count)

        for i in range(coords_count):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(
                (xy_img_pts_pixel[i][0], xy_img_pts_pixel[i][1]))

        # create randomized target array
        indices = range(coords_count)
        shuffled_indices = range(coords_count)

        while indices == shuffled_indices:
            random.shuffle(shuffled_indices)

        rand_targ_array = TargetArray(coords_count)
        for i in range(coords_count):
            rand_targ_array[shuffled_indices[i]].set_pos(target_array[i].pos())
            rand_targ_array[shuffled_indices[i]].set_pnr(target_array[i].pnr())

        # match detection to reference
        matched_target_array = match_detection_to_ref(cal=self.calibration,
                                                      ref_pts=xyz_input,
                                                      img_pts=rand_targ_array,
                                                      cparam=self.control)

        # assert target array is as before
        for i in range(coords_count):
            if matched_target_array[i].pos() != target_array[i].pos() \
                    or matched_target_array[i].pnr() != target_array[i].pnr():
                self.fail()

        # pass ref_pts and img_pts with non-equal lengths
        with self.assertRaises(ValueError):
            match_detection_to_ref(cal=self.calibration,
                                   ref_pts=xyz_input,
                                   img_pts=TargetArray(coords_count - 1),
                                   cparam=self.control)
Exemple #3
0
    def _button_sort_grid_fired(self):
        """
        Uses sortgrid function of liboptv to match between the
        calibration points in the fixp target file and the targets
        detected in the images
        """
        if self.need_reset:
            self.reset_show_images()
            self.need_reset = 0

        self.sorted_targs = []

        for i_cam in range(self.n_cams):

            # if len(self.cal_points) > len(self.detections[i_cam]):
            #     raise ValueError("Insufficient detected points, need at least as"
            #                  "many as fixed points")

            targs = match_detection_to_ref(self.cals[i_cam],
                                           self.cal_points['pos'],
                                           self.detections[i_cam], self.cpar)
            x, y, pnr = [], [], []
            for t in targs:
                if t.pnr() != -999:
                    pnr.append(t.pnr())
                    x.append(t.pos()[0])
                    y.append(t.pos()[1])

            self.sorted_targs.append(targs)
            self.camera[i_cam]._plot.overlays = []
            self.camera[i_cam].plot_num_overlay(x, y, pnr)

        self.status_text = "Sort grid finished."
        self.pass_sortgrid = True