# And also try to make an image with the same (final) pixel scale, but that will be created (first)
    #  larger and then scaled down, to avoid introducing artifacts from the ACovF1d being truncated. 
    final_imsize = 1500 # pixels desired in final image
    final_rad_fov = 1.75*numpy.sqrt(2) # degrees
    final_pixscale = 2*final_rad_fov / float(final_imsize)
    # Start with larger image 
    pixscale = final_pixscale
    rad_fov = final_rad_fov
    imsize = int(2*rad_fov / pixscale)
    if (imsize%2 != 0):
        imsize = imsize + 1
    xr = xsf / pixscale # xr = in pixels, over range that want to simulate
    print 'Image: Rad_fov', rad_fov, 'Imsize', imsize, 'Pixscale', pixscale, 'deg/pix', '(', pixscale*60.*60., 'arcsec/pix)'    
    im = PImagePlots(shift=True, nx=imsize, ny=imsize)
    im.makeImageFromSf(sfx=xr, sf=SF)
    im.showAcovf1d()
    im.showPsd2dI()
    # Trim image to desired final size
    trim = round((imsize - final_imsize)/2.0)
    print 'Trimming about %d pixels from each side' %(trim)
    image = im.imageI[trim:trim+final_imsize, trim:trim+final_imsize]
    image = rescaleImage(image.real, sigma_goal, kappa)
    imsize = len(image)
    pixscale = pixscale
    rad_fov = imsize/2.0*pixscale
    print 'Image After Trimming: Rad_fov', rad_fov, 'Imsize', imsize, 'Pixscale', pixscale, 'deg/pix', '(', pixscale*60.*60., 'arcsec/pix)'    
    im.setImage(image.real)
    imageStats(im.image)
    im.showImage(copy=True)
    im.hanningFilter()
    print 'Rad_fov', rad_fov, 'Imsize', imsize, 'Pixscale', pixscale, 'deg/pix', '(', pixscale*60.*60., 'arcsec/pix)'
    # set up 1d SF with desired scale and pixel scale
    """
    condition = (xsf <= rad_fov)
    xr = xsf[condition] / pixscale # xr = in pixels, over range that want to simulate
    xrpix = numpy.arange(0, imsize, 1.0)
    sfpix = numpy.interp(xrpix, xr, SF[condition])
    """
    condition = (xsf <= rad_fov*numpy.sqrt(2))
    xr = xsf[condition] / pixscale # xr = in pixels, over range that want to simulate
    xrpix = numpy.arange(0, imsize/2.*numpy.sqrt(2), 1.0)
    sfpix = numpy.interp(xrpix, xr, SF[condition])

    # try making image
    im = PImagePlots(shift=True, nx= imsize, ny=imsize)
    im.makeImageFromSf(sfx=xrpix, sf=sfpix)
    im.showImageI()
    pylab.savefig('clouds_1.png', format='png')

    im.image = im.imageI.real
    #im.hanningFilter()
    im.calcAll(min_npix=2, min_dr=1)
    im.plotMore()
    pylab.savefig('clouds_1_dat.png', format='png')
    # Rescale sfx to be in physical (degrees)
    im.sfx = im.sfx * pixscale

    # make another image, as should see difference due to different random phases
    im2 = PImagePlots(shift=True, nx= imsize, ny=imsize)
    im2.invertSf(sfx=xrpix, sf=sfpix)
    im2.invertAcovf1d()